【精编精校卷】2024届湖南省长沙市第一中学高三上学期月考(三)数学试题(解析版)
展开这是一份【精编精校卷】2024届湖南省长沙市第一中学高三上学期月考(三)数学试题(解析版),文件包含湖南省长沙市第一中学2024届高三上学期月考三数学试题原卷版docx、湖南省长沙市第一中学2024届高三上学期月考三数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
时量:120分钟 满分:150分
一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1. 已知复数,则在复平面对应的点位于( )
A. 第一象限B. 第二象限
C. 第三象限D. 第四象限
2. 若的展开式中共有个有理项,则的值为( )
A. 1B. 2C. 3D. 4
3. 已知函数的导函数的图象如图所示,则下列说法正确的是( )
A. 函数有最小值
B. 函数有最大值
C. 函数有且仅有三个零点
D. 函数有且仅有两个极值点
4. 已知函数是定义在上的奇函数,且,有成立,若,则关于的不等式的解集是( )
A. B. C. D.
5. 已知等比数列的公比为q且,记、则“且”是“为递增数列”的( )
A. 充分而不必要条件B. 必要而不充分条件
C. 充分必要条件D. 既不充分也不必要条件
6. 如图,这是一个落地青花瓷,其外形被称为单叶双曲面,可以看成是双曲线C:的一部分绕其虚轴所在直线旋转所形成的曲面.若该花瓶横截面圆的最小直径为8,瓶高等于双曲线C的虚轴长,则该花瓶的瓶口直径为( )
A. B. 24C. 32D.
7. 已知角,且,则( )
A. B. C. D. 2
8. 已知数列,,,,,,,,,,…,其中每一项的分子和分母均为正整数.第一项是分子与分母之和为2的有理数;接下来两项是分子与分母之和为3的有理数,并且从大到小排列;再接下来的三项是分子与分母之和为4的有理数,并且从大到小排列,依次类推.此数列第n项记为,则满足且的n的最小值为( )
A. 47B. 48C. 57D. 58
二、多选题(本大题共4个小题,每小题5.分,共20分.在每小题给出的选项中,有多项是符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分)
9. 为了解某贫困地区实施精准扶贫后成果,现随机抽取了该地区三个县市在2021年建档立卡人员年人均收入提升状况.经统计,A县建档立卡人员年人均收入提升状况用饼状图表示,B县建档立卡人员年人均收入提升状况用条形图表示,C县建档立卡人员年人均收入提升的均值为122(百元),方差为4,A,B,C三县建档立卡人数比例为3∶4∶5,则下列说法正确的有( )
A. A县建档立卡人员年人均收入提升的均值为122
B. B县建档立卡人员年人均收入提升的方差为5.6
C. 估计该地区建档立卡人员的年人均收入提升120.75百元
D. C县精准扶贫的效果最好
10. 如图,在棱长为2的正方体中,,,分别是,,的中点,则( )
A. ,,,四点共面
B.
C. 直线平面
D. 三棱锥体积为
11. 已知圆和圆,分别是圆,圆上动点,则下列说法正确的是( )
A 圆与圆有四条公切线
B. 的取值范围是
C. 是圆与圆的一条公切线
D. 过点作圆的两条切线,切点分别为,则存在点,使得
12. 已知函数,若存在直线,使得是曲线与曲线的公切线,则实数的取值可能是( )
A B. C. 2D. 3
三、填空题(本大题共4个小题,每小题5分,共20分)
13. 已知向量,则向量在向量上的投影向量的坐标为__________.
14. 已知边长为的正方形ABCD的四个顶点在球O的球面上,球O的表面积为,则四棱锥的体积为__________.
15. 将函数且的图象上各点的横坐标伸长为原来的2倍,再将所得图形向左平移个单位长度后,得到一个奇函数图象,则__________.
16. 如图,矩形中, 分别为线段上的动点,且满足.点关于原点的对称点为,直线与交于点,则点到直线的最小距离为__________.
四、解答题(本大题共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17. 已知数列满足:.
(1)证明数列是等比数列,并求数列的通项公式;
(2)若数列满足,求数列的前项和.
18. 在锐角中,角的对边分别为,且满足.
(1)求证:;
(2)设的周长为,求的取值范围.
19. 北京冬奥会之后,多个中小学开展了模拟冬奥会赛事的活动.为了深入了解学生在“单板滑雪”活动中的参与情况,在该地随机选取了10所学校进行研究,得到如下数据:
(1)“单板滑雪”参与人数超过45人的学校可以作为“基地学校”,现在从这10所学校中随机选出3所,记X为选出可作“基地学校”的学校个数,求X的分布列和数学期望;
(2)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这3个动作技巧进行集训,且在集训中进行了多轮测试.规定:在一轮测试中,这3个动作中至少有2个动作达到“优秀”,则该轮测试记为“优秀”.在集训测试中,小明同学3个动作中每个动作达到“优秀”的概率均为,每个动作互不影响且每轮测试互不影响.如果小明同学在集训测试中要想获得“优秀”的次数的平均值达到5次,那么理论上至少要进行多少轮测试?
20. 如图、四边形与四边形是全等的矩形,为上的点.
(1)若为的中点,求证:平面平面;
(2)若直线与平面所成角的正切值为,求平面与平面夹角的余弦值.
21. 已知抛物线的焦点也是椭圆的一个焦点,与的公共弦长为.
(1)求椭圆的方程;
(2)过点作斜率为的直线与交于两点,与交于两点,且与同向.
(i)当直线绕点旋转时,判断的形状;
(ii)若,求直线的斜率.
22. 已知函数.
(1)当时,讨论在上的单调性;
相关试卷
这是一份湖南省长沙市长郡中学2024届高三上学期月考(四)数学试题(原卷及解析版),文件包含精品解析湖南省长沙市长郡中学2024届高三上学期月考四数学试题原卷版docx、精品解析湖南省长沙市长郡中学2024届高三上学期月考四数学试题解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份【精编精校卷】2024届重庆市第十一中学高三上学期第一次质量监测数学试题(解析版),文件包含重庆市第十一中学2024届高三上学期第一次质量监测数学试题原卷版docx、重庆市第十一中学2024届高三上学期第一次质量监测数学试题Word版含解析docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份【精编精校卷】2023届新疆巴音郭楞蒙古自治州第一中学高三上学期线上期中考试数学试题(解析版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。