河北省唐山市路北区2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案
展开
这是一份河北省唐山市路北区2023-2024学年数学八年级第一学期期末质量跟踪监视试题含答案,共7页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.下列四个标志是关于安全警示的标志,在这些标志中,是轴对称图形的是( )
A.B.
C.D.
2.下列各式中,无论取何值分式都有意义的是( )
A.B.C.D.
3.若分式的值为零,则x的值为( )
A.B.C.2D.2
4.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是( )
A.AC=DFB.∠B=∠EC.∠A=∠DD.AB=DE
5.为迎接我市创建全国文明城市活动,环卫处投资20万元购买并投放一批型“垃圾清扫车”,因为清扫车需求量增加,计划继续投放型清扫车,型清扫车的投放数量与型清扫车的投放数量相同,投资总费用减少,购买型清扫车的单价比购买型清扫车的单价少50元,则型清扫车每辆车的价格是多少元?设型清扫车每辆车的价格为元,根据题意,列方程正确的是( )
A.B.
C.D.
6.下列各多项式从左到右变形是因式分解,并分解正确的是( )
A.(a﹣b)3﹣b(b﹣a)2=(b﹣a)2(a﹣2b)B.(x+2)(x+3)=x2+5x+6
C.4a2﹣9b2=(4a﹣9b)(4a+9b)D.m2﹣n2+2=(m+n)(m﹣n)+2
7.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣5D.2.5×10﹣6
8.如图,在等腰中,的垂直平分线交于点,若,,则的周长是( )
A.B.C.D.
9.若(b≠0),则=( )
A.0B.C.0或D.1或 2
10.在平面直角坐标系xOy中,点P在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q在x轴上,若点R的坐标为R(2,2),则QP+QR的最小值为( )
A.B.+2C.3D.4
11.微信已成为人们的重要交流平台,以下微信表情中,不是轴对称图形的是( )
A.B.C.D.
12.如图,在直线l上有三个正方形m、q、n,若m、q的面积分别为5和11,则n的面积( )
A.4B.6C.16D.55
二、填空题(每题4分,共24分)
13.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
14.如图,△ABE和△ACD是△ABC分别沿着AB,AC边翻折180°形成的,若∠BAC=140°,则∠a的度数是________
15.已知:实数m,n满足:m+n=4,mn=-2,则(1+m)(1+n)的值等于_____
16.若点和点关于轴对称,则__________.
17.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、E的面积分别为2,5,1,1.则正方形D的面积是______.
18.如图,在中,,,分别为边,上一点,.将沿折叠,使点与重合,折痕交边于点.若为等腰三角形,则的度数为_____度.
三、解答题(共78分)
19.(8分)已知与成正比例,当时,.
(1)求与的函数关系式;
(2)当时,求的取值范围.
20.(8分)如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.
(1)求证:BD=FD;
(2)当AF+FD=AE时,求证:∠AFD=2∠AED.
21.(8分)(1)画出△ABC关于y轴对称的图形△A1B1C1;
(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)
22.(10分)某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.
(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?
(2)按要求各个社区两种类型的垃圾桶都要有,则a= .
23.(10分)先阅读下列材料:
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
1xy+y1﹣1+x1
=x1+1xy+y1﹣1
=(x+y)1﹣1
=(x+y+1)(x+y﹣1)
(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x1+1x﹣3
=x1+1x+1﹣4
=(x+1)1﹣11
=(x+1+1)(x+1﹣1)
=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:a1﹣b1+a﹣b;
(1)分解因式:x1﹣6x﹣7;
(3)分解因式:a1+4ab﹣5b1.
24.(10分)列方程解应用题:一辆汽车开往距离出发地180km的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.
25.(12分)如图,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,动点P从点B开始沿边BA、AC向点C以3cm/s的速度移动,动点Q从点B开始沿边BC向点C以cm/s的速度移动,动点P、Q同时出发,到点C运动结束.设运动过程中△BPQ的面积为y(cm2),运动时间为t(s).
(1)点P运动到点A,t= (s);
(2)请你用含t的式子表示y.
26.(12分)如图,在中,厘米,厘米,点为的中点,点在线段上以2厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.
(1)若点的运动速度与点相同,经过1秒后,与是否全等,请说明理由.
(2)若点的运动速度与点不同,当点的运动速度为多少时,能够使与全等?
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、B
4、D
5、C
6、A
7、D
8、A
9、C
10、A
11、C
12、C
二、填空题(每题4分,共24分)
13、5
14、80°
15、1
16、-3
17、2
18、1
三、解答题(共78分)
19、 (1) y=2x+2 (2) 时,x>2
20、(1)证明见解析;(2)证明见解析.
21、见解析
22、(1)甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)3或1.
23、(1);(1);(3).
24、1千米/小时.
25、(1)1;(1).
26、(1)全等,见解析;(2)当的运动速度为厘米时,与全等
社区
甲型垃圾桶
乙型垃圾桶
总价
A
10
8
3320
B
5
9
2860
C
a
b
2820
相关试卷
这是一份2023-2024学年河北省唐山市丰南区九上数学期末质量跟踪监视试题含答案,共7页。
这是一份2023-2024学年河北唐山市龙华中学数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,二次函数y=等内容,欢迎下载使用。
这是一份河北省新乐市2023-2024学年九上数学期末质量跟踪监视试题含答案,共9页。试卷主要包含了如图,太阳在A时测得某树,的绝对值为,下列事件是必然事件的为等内容,欢迎下载使用。