2023-2024学年浙江省绍兴市新昌县数学八年级第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,若DC=4,则DE=( )
A.3B.5C.4D.6
2.随着电子技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积0.00000065mm2,0.00000065用科学计数法表示为
A.6.5×107 B.6.5×10-6C.6.5×10-8D.6.5×10-7
3.若分式有意义,则满足的条件是 ( )
A.或-2B.C.D.
4.一个多边形的内角和是720°,这个多边形是( )
A.五边形B.六边形C.七边形D.八边形
5.如图,在中, ,,是的中垂线,是的中垂线,已知的长为,则阴影部分的面积为( )
A.B.C.D.
6.某工厂现在平均每天比原计划多生产50台机器,现在生产800台机器所需时间与原计划生产600台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是( )
A.B.
C.D.
7.下列命题中,假命题是( )
A.对顶角相等
B.平行于同一直线的两条直线互相平行
C.若,则
D.三角形的一个外角大于任何一个和它不相邻的内角
8.如图,△ABC与△关于直线MN对称,P为MN上任意一点,下列说法不正确的是( )
A.B.MN垂直平分
C.这两个三角形的面积相等D.直线AB,的交点不一定在MN上
9.如图,线段AB、CD相交于点O,AO=BO,添加下列条件,不能使 的是( )
A.AC=BDB.∠C=∠DC.AC∥BDD.OC=OD
10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是 ( )
A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA
11.下列长度的三条线段能组成三角形的是( )
A.6cm,8cm,9cmB.4cm,4cm,10cm
C.5cm,6cm,11cmD.3cm,4cm,8cm
12.学校为了了解八年级学生参加课外活动兴趣小组的情况,随机抽查了40名学生(每人只能参加一个兴趣小组),将调查结果列出如下统计表,则八年级学生参加书法兴趣小组的频率是( )
A.0.1B.0.15C.0.2D.0.3
二、填空题(每题4分,共24分)
13.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为____________.
14.如图,在中,为的中点,点为上一点,,、交于点,若,则的面积为______.
15.如图,中,,,,平分,为的中点.若,,则__________.(用含,的式子表示)
16.如图,在△ABC中,已知AD是角平分线,DE⊥AC于E,AC=4,S△ADC=6,则点D到AB的距离是________.
17.某特快列车在最近一次的铁路大提速后,时速提高了30千米/小时,则该列车行驶350千米所用的时间比原来少用1小时,若该列车提速前的速度是千米/小时,根据题意可列方程为_____________.
18.如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________.
三、解答题(共78分)
19.(8分)如图,在平行四边形中,分别为边的中点,是对角线,过点作交的延长线于点.
(1)求证:.
(2)若,
①求证:四边形是菱形.
②当时,求四边形的面积.
20.(8分)如图,将一长方形纸片放在平面直角坐标系中,,,,动点从点出发以每秒1个单位长度的速度沿向终点运动,运动秒时,动点从点出发以相同的速度沿向终点运动,当点、其中一点到达终点时,另一点也停止运动.
设点的运动时间为:(秒)
(1)_________,___________(用含的代数式表示)
(2)当时,将沿翻折,点恰好落在边上的点处,求点的坐标及直线的解析式;
(3)在(2)的条件下,点是射线上的任意一点,过点作直线的平行线,与轴交于点,设直线的解析式为,当点与点不重合时,设的面积为,求与之间的函数关系式.
21.(8分)解下列分式方程:
22.(10分)如图在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,
(1)若△ABD的周长是19,AB=7,求BC的长;
(2)求∠BAD的度数.
23.(10分)如图,在△中,是边的垂直平分线,交于、交于,连接.
(1)若,求的度数;
(2)若△的周长为,△的周长为,求的长.
24.(10分)已知中,.
(1)如图1,在中,,连接、,若,求证:
(2)如图2,在中,,连接、,若,于点,,,求的长;
(3)如图3,在中,,连接,若,求的值.
25.(12分)如图,在△ABC中,∠BAC是钝角,按要求完成下列画图.(不写作法,保留作图痕迹)
(1)用尺规作∠BAC的平分线AE和AB边上的垂直平分线MN;
(2)用三角板作AC边上的高BD.
26.(12分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是的整数部分.
(1)求a,b,c的值;
(2)求3a-b+c的平方根.
参考答案
一、选择题(每题4分,共48分)
1、C
2、D
3、B
4、B
5、B
6、A
7、C
8、D
9、A
10、B
11、A
12、C
二、填空题(每题4分,共24分)
13、20°或40°或70°或100°
14、1
15、
16、3
17、
18、(2,4)或(4,2).
三、解答题(共78分)
19、(1)见解析;(2)①见解析;②1.
20、(1)6-t,t+;(2)D(1,3),y=x+;(3)
21、x=-1
22、(1)BC=2;(2)∠BAD=70°
23、(1)30°(2)6cm
24、(1)详见解析;(2);(3).
25、(1)作图见解析;(2)作图见解析.
26、(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±1.
组别
书法
绘画
舞蹈
其它
人数
8
12
11
9
浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份浙江省绍兴市海亮2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了关于抛物线,下列结论中正确的是等内容,欢迎下载使用。
2023-2024学年浙江省绍兴市新昌县数学九年级第一学期期末监测试题含答案: 这是一份2023-2024学年浙江省绍兴市新昌县数学九年级第一学期期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
浙江省绍兴市暨阳2023-2024学年八上数学期末学业质量监测模拟试题含答案: 这是一份浙江省绍兴市暨阳2023-2024学年八上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,下列条件中能作出唯一三角形的是,要使分式无意义,则的取值范围是等内容,欢迎下载使用。