2023-2024学年浙江省杭州市育才中学数学八上期末达标检测试题含答案
展开
这是一份2023-2024学年浙江省杭州市育才中学数学八上期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列四个命题,下列各式的计算中,正确的是,的值是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.下列各式中属于最简二次根式的是( )
A.B.C.D.
2.已知□ABCD的周长为32,AB=4,则BC的长为( )
A.4B.12C.24D.28
3.若(x2-x+m)(x-8)中不含x的一次项,则m的值为( )
A.8B.-8C.0D.8或-8
4.如果分式有意义,则x的取值范围是( )
A.x<﹣3B.x>﹣3C.x≠﹣3D.x=﹣3
5.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直,其中逆命题是真命题的是( )
A.①②③④B.①③④C.①③D.①
6.已知一次函数的图象经过第一、二、三象限,则的值可以是( )
A.-2B.-1C.0D.2
7.如图,长方形被分割成个正方形和个长方形后仍是中心对称图形,设长方形的周长为,若图中个正方形和个长方形的周长之和为,则标号为①正方形的边长为( )
A.B.C.D.
8.下列各式的计算中,正确的是 ( )
A.2+=2B.4-3=1
C.=x+yD.-=
9.如图,在中,与的平分线交于点,过点作DE∥BC,分别交于点若,则的周长为( )
A.9B.15C.17D.20
10.的值是( )
A.16B.2C.D.
11.的相反数是( )
A.B.C.D.
12.已知:且,则式子:的值为( )
A.B.C.-1D.2
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则PA+PC的最小值为_________.
14.如图,在中,,,是的一条角平分线,为的中点,连接,若,则的面积为_________.
15.若分式有意义,则的取值范围是__________.
16.2015年10月.我国本土科学家屠呦呦荣获诺贝尔生理学或医学奖,她创制新型抗疟药青蒿素为人类作出了突出贡献.疟原虫早期期滋养体的直径约为0.00000122米,这个数字用科学记数法表示为______米.
17.若分式的值为零,则x=______.
18.如图,△ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE,AE与BD相交于点P,则∠BPE=_______________.
三、解答题(共78分)
19.(8分)建立模型:
如图1,等腰Rt△ABC中,∠ABC=90°,CB=BA,直线ED经过点B,过A作AD⊥ED于D,过C作CE⊥ED于E.则易证△ADB≌△BEC.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段AB和直角∠ABC转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点A(0,4),点B(3,0),△ABC是等腰直角三角形.
①若∠ABC=90°,且点C在第一象限,求点C的坐标;
②若AB为直角边,求点C的坐标;
(2)如图3,长方形MFNO,O为坐标原点,F的坐标为(8,6),M、N分别在坐标轴上,P是线段NF上动点,设PN=n,已知点G在第一象限,且是直线y=2x一6上的一点,若△MPG是以G为直角顶点的等腰直角三角形,请直接写出点G的坐标.
20.(8分)在平面直角坐标系中,O为原点,点A(2,0),点B(0,),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.如图,若α=90°,求AA′的长.
21.(8分)如图,正方形ABCD的边长为8,动点P从点A出发以每秒1个单位的速度沿AB向点B运动(点P不与点A,B重合),动点Q从点B出发以每秒2个单位的速度沿BC向点C运动,点P,Q同时出发,当点Q停止运动,点P也随之停止.连接AQ,交BD于点E,连接PE.设点P运动时间为x秒,求当x为何值时,△PBE≌△QBE.
22.(10分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.
(1)求证:AB=AF;
(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
23.(10分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).
(1)将△ABC沿x轴方向向左平移6个单位长度,画出平移后得到的△A1B1C1;
(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2;
(3)直接写出点B2,C2的坐标.
24.(10分)如图,已知在平面直角坐标中,直线l:y=﹣2x+6分别交两坐标于A、B两点,M是级段AB上一个动点,设点M的横坐标为x,△OMB的面积为S.
(1)写出S与x的函数关系式;
(2)当△OMB的面积是△OAB面积的时,求点M的坐标;
(3)当△OMB是以OB为底的等腰三角形,求它的面积.
25.(12分)解不等式组,并求出不等式组的整数解之和.
26.(12分)某商场计划购进、两种新型节能台灯共盏,这两种台灯的进价、售价如表所示:
()若商场预计进货款为元,则这两种台灯各购进多少盏?
()若商场规定型台灯的进货数量不超过型台灯数量的倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?
参考答案
一、选择题(每题4分,共48分)
1、A
2、B
3、B
4、C
5、C
6、D
7、B
8、D
9、A
10、B
11、D
12、A
二、填空题(每题4分,共24分)
13、
14、
15、x≠1
16、1.22×10﹣1.
17、-1
18、60°
三、解答题(共78分)
19、(1)①(7,3);②(7,3)、(4,7)、(-4,1)、(-1,-3);(2)(4,2)、.
20、
21、当x为秒时,△PBE≌△QBE
22、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析.
23、(1)答案见解析;(2)答案见解析;(3)点B2(4,-2),C2(1,-3).
24、(1)S=﹣3x+9(0≤x<3);(2)M(1,4);(3).
25、,15
26、(1)购进型台灯盏,型台灯25盏;
(2)当商场购进型台灯盏时,商场获利最大,此时获利为元.
相关试卷
这是一份浙江省杭州市春蕾中学2023-2024学年九上数学期末达标检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份2023-2024学年浙江省杭州市育才中学数学九上期末综合测试试题含答案,共7页。试卷主要包含了下列方程是一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年浙江省杭州市上城区九上数学期末达标检测试题含答案,共7页。试卷主要包含了抛物线的顶点坐标是,下列事件中是随机事件的个数是等内容,欢迎下载使用。