2023-2024学年浙江省杭州市建兰中学八年级数学第一学期期末学业质量监测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.如果实数a=,且a在数轴上对应点的位置如图所示,其中正确的是( )
A.
B.
C.
D.
2.已知一粒米的质量是0.00021kg,这个数用科学记数法表示为 ( )
A.kgB.kgC.kgD.kg
3.如图,已知数轴上点表示的数为,点表示的数为1,过点作直线垂直于,在上取点,使,以点为圆心,以为半径作弧,弧与数轴的交点所表示的数为( )
A.B.C.D.
4.把式子2x(a﹣2)﹣y(2﹣a)分解因式,结果是( )
A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)
C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)
5.解方程组时,①—②,得( )
A. .B.C.D.
6.的相反数是( )
A.B.C.D.
7.用科学记数法表示:0.000000109是( )
A.1.09×10﹣7B.0.109×10﹣7C.0.109×10﹣6D.1.09×10﹣6
8.如图,为的角平分线,,过作于,交的延长线于,则下列结论:①;②;③;④其中正确结论的序号有( )
A.①②③④B.②③④C.①②③D.①②④
9.如图,在一个三角形的纸片()中, ,将这个纸片沿直线剪去一个角后变成一个四边形,则图中的度数为( )
A.180°B.90C.270°D.315°
10.如图,在中,,平分,过点作于点.若,则( )
A.B.C.D.
11.下列说法正确的是( )
A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形
C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形
12.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为( )
A.28×10﹣9mB.2.8×10﹣8mC.28×109mD.2.8×108m
二、填空题(每题4分,共24分)
13.已知关于的分式方程的解是非负数,则的取值范围是__________.
14.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是_________.
15.已知直线l1:y=x+1与直线l2:y=mx+n相交于点P(2,b),则关于x,y的方程组的解是______.
16.如图,一只蚂蚁从点沿数轴向右爬2个单位到达点,点表示,则表示的数为______.
17.当______时,分式的值为1.
18.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.
三、解答题(共78分)
19.(8分)如图,中,是高,点是上一点,,,分别是上的点,且.
(1)求证:.
(2)探索和的关系,并证明你的结论.
20.(8分)如图,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B(0,m)、C(0,n)两点,且m、n(m>n)满足方程组的解.
(1)求证:AC⊥AB;
(2)若点D在直线AC上,且DB=DC,求点D的坐标;
(3)在(2)的条件下,在直线BD上寻找点P,使以A、B、P三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
21.(8分)在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.
(1)求甲队每天修路多少米?
(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?
22.(10分)如图,点是等边三角形的边上一点,交于,延长至,使,连结交于.
(1)请先判断的形状,并说明理由.
(2)请先判断和是否相等,并说明理由.
23.(10分)已知:如图,AB,CD相交于点O,AC∥DB,OC=OD,E,F为AB上两点,且AE=BF,求证:CE=DF.
24.(10分)因为,令=1,则(x+3)(x-2)=1,x=-3或x=2,反过来,x=2能使多项式的值为1.
利用上述阅读材料求解:
(1)若x﹣4是多项式x2+mx+8的一个因式,求m的值;
(2)若(x﹣1)和(x+2)是多项式的两个因式,试求a,b的值;
(3)在(2)的条件下,把多项式因式分解的结果为 .
25.(12分)阅读材料,回答问题:
两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式.例如:因为,,所与,与互为有理化因式.
(1)的有理化因式是 ;
(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:
,
用上述方法对进行分母有理化.
(3)利用所需知识判断:若,,则的关系是 .
(4)直接写结果: .
26.(12分)解下列不等式(组).
(1)求正整数解.
(2)(并把解表示在数轴上).
参考答案
一、选择题(每题4分,共48分)
1、C
2、A
3、B
4、A
5、C
6、D
7、A
8、A
9、C
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、且
14、1
15、
16、.
17、
18、1
三、解答题(共78分)
19、(1)证明见解析;(2)BM=BN,MB⊥BN;证明见解析.
20、(1)见解析;(2);(3)点P的坐标为:(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+)
21、(1)200米;(2)140天
22、(1)等边三角形,证明见解析;(2),证明见解析.
23、见解析
24、(1)m=-6;(2);(3)(x-1)(x+2)(x-3)
25、(1);(2);(3)互为相反数;(4)2019
26、(1)
(2),画图见解析
浙江省杭州市上城区建兰中学2023-2024学年数学九上期末质量检测试题含答案: 这是一份浙江省杭州市上城区建兰中学2023-2024学年数学九上期末质量检测试题含答案,共8页。试卷主要包含了若,则,的值为等内容,欢迎下载使用。
杭州市建兰中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案: 这是一份杭州市建兰中学2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列事件中,是随机事件的是等内容,欢迎下载使用。
2023-2024学年浙江省杭州市建兰中学数学九上期末学业质量监测试题含答案: 这是一份2023-2024学年浙江省杭州市建兰中学数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。