2023-2024学年陕西省延安市数学八上期末调研试题含答案
展开
这是一份2023-2024学年陕西省延安市数学八上期末调研试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列等式变形是因式分解的是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.现有甲,乙两个工程队分别同时开挖两条 600 m 长的隧道,所挖遂道长度 y(m)与挖掘时间x(天)之间的函数关系如图所示.则下列说法中,错误的是( )
A.甲队每天挖 100 m
B.乙队开挖两天后,每天挖50米
C.甲队比乙队提前2天完成任务
D.当时,甲、乙两队所挖管道长度相同
2.如图,等腰直角△ABC中,AC=BC,BE平分∠ABC,AD⊥BE的延长线于点D,若AD=2,则△ABE的面积为( ).
A.4B.6C.2D.2
3.如图,函数y=ax+b和y=kx的图像交于点P,关于x,y的方程组的解是( )
A.B.C.D.
4.对于任意的正数m,n定义运算※为:m※n=计算(3※2)×(8※12)的结果为( )
A.2-4B.2C.2D.20
5.对于一次函数y=﹣2x+1,下列说法正确的是( )
A.图象分布在第一、二、三象限
B.y随x的增大而增大
C.图象经过点(1,﹣2)
D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1>y2
6.如图,AB=AC,∠A=36°,AB的垂直平分线MN交AB于点M,交AC于点D,下列结论:①△BCD是等腰三角形;②BD是∠ABC的平分线;③DC+BC=AB;④△AMD≌△BCD,正确的是 ( )
A.①②B.②③C.①②③D.①②④
7.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的大正方形.设直角三角形较长的直角边为,较短的直角边为,且,则大正方形面积与小正方形面积之比为( )
A.25:9B.25:1C.4:3D.16:9
8.下列等式变形是因式分解的是( )
A.﹣a(a+b﹣3)=a2+ab﹣3a
B.a2﹣a﹣2=a(a﹣1)﹣2
C.﹣4a2+9b2=﹣(2a+3b)(2a﹣3b)
D.2x+1=x(2+)
9.如图,点C、B分别在两条直线y=﹣3x和y=kx上,点A、D是x轴上两点,若四边形ABCD是正方形,则k的值为( )
A.3B.2C.D.
10. “等腰三角形两底角相等”的逆命题是( )
A.等腰三角形“三线合一”
B.底边上高和中线重合的三角形等腰
C.两个角互余的三角形是等腰三角形
D.有两个角相等的三角形是等腰三角形
二、填空题(每小题3分,共24分)
11.若最简二次根式与是同类二次根式,则a的值为________.
12.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.
13.在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等______.
14.如图,△ABC中,AB=AC,∠BAC=48°,∠BAC的平分线与线段AB的垂直平分线OD交于点O.连接OB、OC,将∠ACB沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为_____度.
15.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间比原计划生产450台机器所需时间相同,现在平均每天生产___台机器.
16.若分式方程=a 无解,则a的值为________.
17.如图示在△ABC中∠B= .
18.如图,在中,,,,则的度数为______°.
三、解答题(共66分)
19.(10分)如图,在中.
利用尺规作图,在BC边上求作一点P,使得点P到AB的距离的长等于PC的长;
利用尺规作图,作出中的线段PD.
要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑
20.(6分)如图1,在正方形ABCD(正方形四边相等,四个角均为直角)中,AB=8,P为线段BC上一点,连接AP,过点B作BQ⊥AP,交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交AD于点N.
(1)求证:BP=CQ;
(2)若BP=PC,求AN的长;
(3)如图2,延长QN交BA的延长线于点M,若BP=x(0<x<8),△BMC'的面积为S,求S与x之间的函数关系式.
21.(6分)为了预防“流感”,某学校在休息日用“药熏”消毒法对教室进行消毒.已知药物释放过程中,室内每立方米的含药量y(毫克)与时间x(时)成正比例;药物释放结束后,y与x成反比例;如图所示,根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数解析式;
(2)据测定,当药物释放结束后,每立方米的含药量降至0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多长时间,学生才能进入教室?
22.(8分)如图,在平面直角坐标系中,每个小正方形网格的边长为1,和关于点成中心对称.
(1)画出对称中心,并写出点的坐标______.
(2)画出绕点顺时针旋转后的;连接,可求得线段长为______.
(3)画出与关于点成中心对称的;连接、,则四边形是______;(填属于哪一种特殊四边形),它的面积是______.
23.(8分)如图,四边形ABCD是矩形,过点D作DE∥AC,交BA的延长线于点E.求证:∠BDA =∠EDA.
24.(8分)解不等式组:;并将解集在数轴上表示出来.
25.(10分)如图,,,,请你判断是否成立,并说明理由.
26.(10分)如图,观察每个正多边形中的变化情况,解答下列问题:
(1)将下面的表格补充完整:
(2)根据规律,是否存在一个正边形,使其中?若存在,直接写出的值;若不存在,请说明理由;
(3)根据规律,是否存在一个正边形,使其中?若存在,直接写出的值;若不存在,请说明理由.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、A
3、D
4、B
5、D
6、C
7、B
8、C
9、D
10、D
二、填空题(每小题3分,共24分)
11、4
12、17
13、1或6
14、1
15、1
16、1或-1
17、25°.
18、65
三、解答题(共66分)
19、作图见解析; (2)作图见解析.
20、(1)见解析;(2)1.2;(3)
21、(1)y=;(2)从药物释放开始,至少需要经过8小时,学生才能进入教室.
22、(1)作图见解析,;(2)作图见解析,;(3)平行四边形,1
23、见解析
24、.数轴表示见解析
25、成立,证明见解析
26、(1)60°,45°,36°,30°,12°;(2)存在,n=18;(3)不存在,理由见解析.
正多边形的边数
3
4
5
6
…
15
的度数
…
相关试卷
这是一份2023-2024学年陕西省延安市实验中学九上数学期末经典试题含答案,共8页。
这是一份2023-2024学年陕西省延安市延长县八上数学期末复习检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年陕西省西安市工大附中八上数学期末调研试题含答案,共7页。试卷主要包含了已知一组数据,下面是一名学生所做的4道练习题,当x=时,互为相反数.,已知x-y=3,,则的值等于,下列命题中是真命题的是等内容,欢迎下载使用。