2023-2024学年辽宁省锦州市凌海市八上数学期末经典试题含答案
展开
这是一份2023-2024学年辽宁省锦州市凌海市八上数学期末经典试题含答案,共7页。试卷主要包含了已知,,则的值为,若分式的值为零,则的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列命题中,是假命题的是( )
A.对顶角相等B.同位角相等
C.同角的余角相等D.全等三角形的面积相等
2.如图,已知△ABC≌△ADC,∠B=30°,∠BAC=23°,则∠ACD的度数为( )
A.120°B.125°C.127°D.104°
3.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是( )
A.(1,0)B.(1,2)C.(2,1)D.(1,1)
4.以下列各组线段长为边,不能组成三角形的是( )
A.8cm,7cm,13cm B.6cm,6cm,12cm C.5cm,5cm,2cm D.10cm,15cm,17cm
5.下列说法中错误的是( )
A.全等三角形的对应边相等B.全等三角形的面积相等
C.全等三角形的对应角相等D.全等三角形的角平分线相等
6.两地相距200千米,甲车和乙车的平均速度之比为5:6,两辆车同时从地出发到地,乙车比甲车早到30分钟,设甲车平均速度为千米/小时,则根据题意所列方程是( )
A.B.
C.D.
7.如图,把剪成三部分,边,,放在同一直线上,点都落在直线上,直线.在中,若,则的度数为( )
A.B.C.D.
8.已知,,则的值为( )
A.8B.6C.12D.
9.若分式的值为零,则的值为( )
A.2B.3C.﹣2D.﹣3
10.小王每天记忆10个英语单词,x天后他记忆的单词总量为y个,则y与x之间的函数关系式是( )
A.y=10+xB.y=10xC.y=100xD.y=10x+10
二、填空题(每小题3分,共24分)
11.若点关于轴的对称点的坐标是,则的值是__________.
12.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+1.其中说法正确的有________.
13.如图,在△ABC 中,∠ACB=90°,AC=6cm,BC=8cm,分别以三角形的三条边为边作正方形,则三个正方形的面 S1+S2+S3 的值为_______.
14.如图,在中,有,.点为边的中点.则的取值范围是_______________.
15.一根木棒能与长为和的两根木棒钉成一个三角形,则这根木棒的长度的取值范围是____________.
16.计算 =_____.
17.已知m+2n+2=0,则2m•4n的值为_____.
18.如图,∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°,在射线OB上有一点P,从点P点射出的一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是___________
三、解答题(共66分)
19.(10分)如图,已知点 B、F、C、E 在一条直线上,BF = CE,AC = DF,且 AC∥DF. 求证:∠B =∠E.
20.(6分)在社会主义新农村建设中,某乡镇决定对一段公路进行改造,已知这项工程由甲工程队单独做需要40天完成;如果由乙工程先单独做10天,那么剩下的工程还需要两队合做20天才能完成.
(1)求乙工程队单独完成这项工程所需的天数;
(2)求两队合作完成这项工程所需的天数.
21.(6分)如图1,在平面直角坐标系中,O为坐标原点,点A(8,0).动点P从A出发以每秒2个单位长度的速度沿线段AO向终点O运动,同时动点Q从O出发以相同速度沿y轴正半轴运动,点P到达点O,两点同时停止运动,设运动时间为t.
(1)当∠OPQ=45°时,请求出运动时间t;
(2)如图2,以PQ为斜边在第一象限作等腰Rt△PQM,设M点坐标为(m,n),请探究m与n的数量关系并说明理由.
22.(8分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.
(1)求每台电脑、每台电子白板各多少万元?
(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.
23.(8分)平面直角坐标系中,点坐标为,分别是轴,轴正半轴上一点,过点作轴,,点在第一象限,,连接交轴于点,,连接.
(1)请通过计算说明;
(2)求证;
(3)请直接写出的长为 .
24.(8分) (1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值;
(2)已知3x+2·5x+2=153x-4,求(2x-1)2-4x2+7的值.
25.(10分)如果一个三角形的两条边的和是第三边的两倍,则称这个三角形是“优三角形”,这两条边的比称为“优比”(若这两边不等,则优比为较大边与较小边的比),记为.
(1)命题:“等边三角形为优三角形,其优比为1”,是真命题还是假命题?
(2)已知为优三角形,,,,
①如图1,若,,,求的值.
②如图2,若,求优比的取值范围.
(3)已知是优三角形,且,,求的面积.
26.(10分)某市为了鼓励居民节约用水,决定水费实行两级收费制度.若每月用水量不超过10吨(含10吨),则每吨按优惠价m元收费;若每月用水量超过10吨,则超过部分每吨按市场价 元收费,小明家3月份用水20吨,交水费50元;4月份用水18吨,交水费44元.
(1)求每吨水的优惠价和市场价分别是多少?
(2)设每月用水量为 吨,应交水费为 元,请写出 与 之间的函数关系式.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、D
4、B
5、D
6、B
7、C
8、C
9、A
10、B
二、填空题(每小题3分,共24分)
11、-1
12、①④
13、200
14、
15、5<<13
16、10
17、
18、80°
三、解答题(共66分)
19、见解析
20、(1)60 (2)24
21、(1)当∠OPQ=45°时,运动时间为2秒;(2);理由见解析.
22、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析
23、(1)证明见解析;(2)证明见解析;(3).
24、(1)29;9;(2)-4.
25、(1)该命题是真命题,理由见解析;(2)①a的值为;②k的取值范围为;(3)的面积为或.
26、(1)每吨水的优惠价2元,市场价为3元;(2)当时,, 当时,
相关试卷
这是一份辽宁省锦州市凌海市2023-2024学年八年级上学期期中质量检测数学试卷(含解析),共15页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2021-2022学年辽宁省锦州市凌海市八年级上学期期中数学试题及答案,共10页。试卷主要包含了选择题,第四象限角平分线上,计算题,画图题,22阅读题阅读下面问题,应用题等内容,欢迎下载使用。
这是一份辽宁省锦州市第七中学2023-2024学年八上数学期末联考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,函数y=中自变量x的取值范围是,下列整式的运算中,正确的是,下列图形中,不是轴对称图形的是等内容,欢迎下载使用。