2023-2024学年湖南省长沙市雅实、北雅、长雅三校数学八年级第一学期期末达标检测试题含答案
展开
这是一份2023-2024学年湖南省长沙市雅实、北雅、长雅三校数学八年级第一学期期末达标检测试题含答案,共8页。试卷主要包含了在下列图形中是轴对称图形的是,如图,是线段上的两点,等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.下列四种说法:(1)分式的分子、分母都乘以(或除以)a 2,分式的值不变;(2)分式的值能等于零;(3)方程的解是;(4)的最小值为零.其中正确的说法有( ).
A.1个B.2个C.3个D.4个
2.已知:且,则式子:的值为( )
A.B.C.-1D.2
3.如图,△ABC≌△ADE,点D落在BC上,且∠EDC=70°,则∠B的度数等于( )
A.50°B.55°C.60°D.65°
4.如图,已知点A和直线MN,过点A用尺规作图画出直线MN的垂线,下列画法中错误的是( )
A.B.
C.D.
5.如图,在△ABC中,AB=6,BC=5,AC=4,AD平分∠BAC交BC于点D,在AB上截取AE=AC,则△BDE的周长为( )
A.8B.7C.6D.5
6.如图,直线分别与轴,轴相交于点、,以点为圆心,长为半轻画弧交轴于点,再过点作轴的垂线交直线于点,以点为圆心,长为半径画弧交轴于点,,按此作法进行下去,则点的坐标是( )
A.B.C.D.
7.在下列图形中是轴对称图形的是( )
A.B.
C.D.
8.如图,在△ABC中,点D,E,F分别在三边上,点E是AC的中点,AD,BE,CF交于一点G,
BD=2DC,S△BGD=8,S△AGE=3,则△ABC的面积是( )
A.25B.30C.35D.40
9.若x2﹣kxy+9y2是一个完全平方式,则k的值为( )
A.3B.±6C.6D.+3
10.如图,是线段上的两点,.以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧,两弧交于点,连结,则一定是( )
A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形
二、填空题(每小题3分,共24分)
11. 如图,已知,要使,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)
12.如图,△ABC中,AB=AC=13,BC=10,AD⊥BC,BE⊥AC,P为AD上一动点,则PE+PC的最小值为__________.
13.某商店卖水果,数量x(千克)与售价y(元)之间的关系如下表,(y是x的一次函数)
当x=7千克时,售价y=______元.
14.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为,,成绩比较稳定的是__________(填“甲”或“乙”)
15.已知点与点关于轴对称,则_______.
16.在中,是高,若,则的度数为______.
17.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.
18.已知,在中,,,为中点,则__________.
三、解答题(共66分)
19.(10分)如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.
(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.
(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.
(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.
20.(6分)解方程:
21.(6分)如图,将一张矩形纸板按图中虚线裁剪成九块,其中有两块是边长都为的大正方形,两块是边长都为的小正方形,五块是长为,宽为的全等小矩形,且.
(1)观察图形,将多项式分解因式;
(2)若每块小矩形的面积为10,四个正方形的面积和为58.求下列代数式的值:
①.
②.
22.(8分)先化简,再求值:,其中x=-3.
23.(8分)如图所示,已知点M(1,4),N(5,2),P(0,3),Q(3,0),过P,Q两点的直线的函数表达式为y=﹣x+3,动点P从现在的位置出发,沿y轴以每秒1个单位长度的速度向上移动,设移动时间为ts.
(1)若直线PQ随点P向上平移,则:
①当t=3时,求直线PQ的函数表达式.
②当点M,N位于直线PQ的异侧时,确定t的取值范围.
(2)当点P移动到某一位置时,△PMN的周长最小,试确定t的值.
(3)若点P向上移动,点Q不动.若过点P,Q的直线经过点A(x0,y0),则x0,y0需满足什么条件?请直接写出结论.
24.(8分)如图,都为等腰直角三角形,三点在同一直线上,连接.
(1)若,求的周长;
(2)如图,点为的中点,连接并延长至,使得,连接.
①求证:;
②探索与的位置关系,并说明理由.
25.(10分)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
26.(10分)先仔细阅读材料,再尝试解决问题:我们在求代数式的最大或最小值时,通过利用公式对式子作如下变形:
,
因为,
所以,
因此有最小值2,
所以,当时,,的最小值为2.
同理,可以求出的最大值为7.
通过上面阅读,解决下列问题:
(1)填空:代数式的最小值为______________;代数式的最大值为______________;
(2)求代数式的最大或最小值,并写出对应的的取值;
(3)求代数式的最大或最小值,并写出对应的、的值.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、B
4、A
5、B
6、B
7、B
8、B
9、B
10、B
二、填空题(每小题3分,共24分)
11、可添∠ABD=∠CBD或AD=CD.
12、
13、22.5元
14、乙
15、
16、65°或25°
17、1
18、1
三、解答题(共66分)
19、 (1)、AD=AE,理由见解析;(2)、AE=DF,AE∥DF;理由见解析;(3)、OC=AC+AD,理由见解析.
20、x=1
21、(1);(2)①7,②1.
22、
23、(1)①y=﹣x+6,②2<t<4;(2);(1)x0<1时,y0>﹣x+1,当x0>1时,y0<﹣x0+1.
24、(1);(2)①见解析;②,理由见解析
25、(1)计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)需调配36座客车3辆,22座客车5辆.
26、(2)2,;(2),最小值;(2)当,,时,有最小值-2.
相关试卷
这是一份湖南省长沙市长雅实、西雅、雅洋2023-2024学年九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了下列说法中正确的是等内容,欢迎下载使用。
这是一份湖南省长沙市雅实、北雅、长雅三校2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共9页。试卷主要包含了抛物线的顶点坐标为,如图所示,几何体的左视图为等内容,欢迎下载使用。
这是一份湖南省长沙市长雅实、西雅、雅洋2023-2024学年八年级数学第一学期期末联考模拟试题含答案,共8页。试卷主要包含了如图,已知等内容,欢迎下载使用。