2021年湖北大冶实验中学中考数学模拟试卷
展开
这是一份2021年湖北大冶实验中学中考数学模拟试卷,共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
1、实数的平方根( )
A. 3B. -3C. ±3D. ±
2、用科学记数法表示136000,其结果是( )
A. 0.136×106B. 1.36×105C. 136×103D. 136×106
3、下列图形中,既是中心对称图形又是轴对称图形的是( )
A. B. C. D.
4、下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )
A. B.
C. D.
5、若|x-2|+|y+6|=0,则x+y的值是()
A. 4B. C. D. 8
6、已知实数x,y满足(x-2)2+=0,则点P(x,y)所在的象限是( )
A. 第一象限B. 第二象限C. 第三象限D. 第四象限
7、如图,△ODC是由△OAB绕点O顺时针旋转30°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠B的度数是( )
A. 40°B. 35°C. 30°D. 15°
8、如图,四边形ABCD是菱形,,,于H,则DH等于( )
A. B. C. 5 D. 4
9、如图,直线与双曲线交于、两点,则当时,x的取值范围是
A. 或 B. 或
C. 或 D.
10、如图,AD是△ABC的中线,AE=EF=FC,BE、AD交于点G,给出下列3个关系式:①=;②=;③=.其中,正确的是( )
A. ①② B. ①③ C. ②③ D. ①②③
二、填空题(本大题共6小题,共18.0分)
11、因式分解:a3-a=______.
12、分式方程的解为______.
13、如图,为测量某栋楼房AB的高度,在C点测得A点的仰角为30°,朝楼房AB方向前进10米到达点D,再次测得A点的仰角为60°,则此楼房的高度为______ 米(结果保留根号).
14、某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.该年级共有700人,估计该年级足球测试成绩为D等的人数为______人.
15、如图,边长为的正方形的顶点、在一个半
径为的圆上,顶点、在圆内,将正方形沿圆的内
壁逆时针方向作无滑动的滚动,当点第一次落在圆上时,
点运动的路径长为 .
16、如图,在一单位为1的方格纸
上,△A1A2A3,△A3A4A5,△A5A6A7,…
,都是斜边在x轴上、斜边长分别为
2,4,6,…的等腰直角三角形.若
A1A2A3的顶点坐标分别为
A1(2,0),A2(1,-1),A3(0,0)
,则依图中所示规律,A2012的坐标为______ .
三、解答题(本大题共11小题,共88.0分)
17、(本题满分7分)计算:4cs30°+(1-)0-+|-2|.
18、(本题满分7分)先化简:(-a+1)÷,并从0,-1,2中选一个合适的数作为a的值代入求值.
19、(本题满分7分)求不等式组的整数解.
20、(本题满分7分)已知关于x的一元二次方程x2-(m-3)x-m=0
(1)求证:方程有两个不相等的实数根;
(2)如果方程的两实根为x1、x2,且x12+x22-x1x2=7,求m的值.
21、(本题满分8分)如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.
(1)求证:DE=BF;
(2)求证:四边形MFNE是平行四边形.
22、(本题满分8分)一个不透明的口袋中装有4个球,分别是红球和白球,这些球除颜色外都相同,将球搅匀,先从中任意摸出一个球,恰好摸到红球的概率等于.
(1)求口袋中有几个红球?
(2)先从中任意摸出一个球,从余下的球中再摸出一个球,请用列表法或树状图法求两次摸到的球中一个是红球和一个是白球的概率.
23、(本题满分8分)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.
(1)求每台电冰箱与空调的进价分别是多少?
(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?
24、(本题满分10分)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线;
(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;
(3)若CD=1,EH=3,求BF及AF长.
25、(本题满分10分)如图,抛物线y=-x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(-1,0),与y轴交于点C(0,2),直线CD:y=-x+2与x轴交于点D.动点M在抛物线上运动,过点M作MP⊥x轴,垂足为P,交直线CD于点N.
(1)求抛物线的解析式;
(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;
(3)点E是抛物线对称轴与x轴的交点,点F是x轴上一动点,点M在运动过程中,若以C、E、F、M为顶点的四边形是平行四边形时,请直接写出点F的坐标.
相关试卷
这是一份2023年湖北省黄石市大冶市东岳中学中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年湖北省黄石市大冶市城北中学中考数学一模试卷(含解析),共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年湖北省黄石市大冶市东岳中学中考数学一模试卷,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。