还剩52页未读,
继续阅读
所属成套资源:新教材适用2024版高考数学二轮总复习课件(39份)
成套系列资料,整套一键下载
新教材适用2024版高考数学二轮总复习第1篇核心专题提升多维突破专题6概率与统计第3讲统计与成对数据的分析课件
展开
这是一份新教材适用2024版高考数学二轮总复习第1篇核心专题提升多维突破专题6概率与统计第3讲统计与成对数据的分析课件,共60页。PPT课件主要包含了专题六概率与统计,分析考情·明方向,真题研究·悟高考,考点突破·提能力,核心考点1抽样方法等内容,欢迎下载使用。
第3讲 统计与成对数据的分析
1. (2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【解析】 该地农户家庭年收入低于4.5万元的农户比率为(0.02+0.04)×1=0.06=6%,故选项A正确;该地农户家庭年收入不低于10.5万元的农户比率为(0.04+0.02×3)×1=0.1=10%,故选项B正确;估计该地农户家庭年收入的平均值为3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02=7.68>6.5万元,故选项C错误;家庭年收入介于4.5万元至8.5万元之间的频率为(0.1+0.14+0.2+0.2)×1=0.64>0.5,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项D正确.故选C.
2. (2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
3. (2021·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
4. (2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
5. (2022·全国甲卷)甲、乙两城之间长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
6. (2023·全国乙卷理科)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:
【解析】 (1)根据表中数据,计算zi=xi-yi(i=1,2,…,10),填表如下:
7. (2023·全国甲卷理科)为探究其药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.224.6 24.8 25.0 25.4 26.1 26.3 26.426.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.410.0 10.4 11.2 14.4 17.3 19.2 20.223.6 23.8 24.5 25.1 25.2 26.0
①求40只小鼠体重的中位数m,并完成下面2×2列联表:
②根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:
角度1:简单随机抽样1.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( )
2.我国古代数学名著《数书九章》中有“米谷粒分”问题:“开仓受纳,有甲户米一千五百三十四石到廊.验得米内夹谷,乃于样内取米一捻,数计二百五十四粒,内有谷二十八颗.今欲知米内杂谷多少.”意思是:官府开仓接受百姓纳粮,甲户交米1 534石到廊前,检验出米里夹杂着谷子,于是从米样粒取出一捻,数出共254粒,其中有谷子28颗,则这批米内有谷子约_________石(结果四舍五入保留整数).
角度2:分层随机抽样的应用3. (2023·上饶二模)为了支持民营企业发展壮大,帮助民营企业解决发展中的困难,某市政府采用分层抽样调研走访各层次的民营企业.该市的小型企业、中型企业、大型企业分别有900家、90家、10家.若大型企业的抽样家数是2,则中型企业的抽样家数应该是( )A.180B.90 C.18D.9【解析】 该市中型企业和大型企业的家数比为9∶1,由分层抽样的意义可得中型企业的抽样家数应该是9×2=18.故选C.
4. (2023·吴忠模拟)在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=( )A.15B.20 C.30D.60
1.简单随机抽样(1)简单随机抽样需满足:被抽取的样本总体的个体数有限;逐个抽取;等可能抽取.(2)简单随机抽样一般有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况)
1.下列抽取样本的方式属于简单随机抽样的个数为( )①从无限多个个体中抽取100个个体作为样本;②从20件玩具中一次性抽取3件进行质量检验;③某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1 C.2D.3
【解析】 ①不是简单随机抽样.因为被抽取样本的总体的个数是无限的,而不是有限的.②不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.③不是简单随机抽样.因为不是等可能抽样.故选A.
2. (2023·江西模拟)目前,甲型流感病毒在国内传播,据某市卫健委通报,该市流行的甲型流感病毒,以甲型H1N1亚型病毒为主,假如该市某小区共有100名感染者,其中有10名年轻人,60名老年人,30名儿童,现用分层抽样的方法从中随机抽取20人进行检测,则做检测的老年人人数为( )A.6B.10 C.12D.16
核心考点2 用样本估计总体
(4)百分位数①第p百分位数的定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据_____________这个值,且至少有____________________的数据大于或等于这个值.②计算一组n个数据的第p百分位数的步骤:第1步,按___________排列原始数据.第2步,计算i=___________.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第_____________项数据的平均数.
角度1:统计图表1. (2023·郑州三模)为了树立和践行绿水青山就是金山银山的理念,A市某高中全体教师于2023年3月12日开展植树活动,购买柳树、银杏、梧桐、樟树四种树苗共计600棵,比例如图所示.青年教师、中年教师、老年教师报名参加植树活动的人数之比为5∶3∶2,若每种树苗均按各年龄段报名人数的比例进行分配,则中年教师应分得梧桐的数量为( )A.30棵B.50棵C.72棵D.80棵
2. (2023·市中区校级二模)某调查机构抽取了部分关注济南地铁建设的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图.根据图中(35岁以上含35岁)的信息,关于该样本的结论不一定正确的是( )
A.男性比女性更关注地铁建设B.关注地铁建设的女性多数是35岁以上C.35岁以下的男性人数比35岁以上的女性人数多D.35岁以上的人对地铁建设关注度更高
【解析】 由等高条形图可得:由左图知,样本中男性数量多于女性数量,所以男性比女性更关注地铁建设,故A正确;由右图知女性中35岁以上的占多数,从而样本中多数女性是35岁以上,从而得到关注地铁建设的女性多数是35岁以上,故B正确;由左图知男性人数大于女性人数,由右图知35岁以下的男性占男性人数比35岁以上的女性占女性人数的比例少,所以无法判断35岁以下的男性人数与35岁以上的女性人数的多少,故C不一定正确;由右图知样本中35岁以上的人对地铁建设关注度更高,故D正确.故选C.
3. (2023·雁塔区校级模拟)某滑冰馆统计了某小区居民在该滑冰馆一个月的锻炼天数,得到如图所示的频率分布直方图(将频率视为概率),则下列说法正确的是( )
A.该小区居民在该滑冰馆的锻炼天数在区间(25,30]内的最少B.估计该小区居民在该滑冰馆的锻炼天数超过15天的概率为0.465C.估计该小区居民在该滑冰馆的锻炼天数的中位数为16D.估计小区居民在该滑冰馆的锻炼天数的平均值为15
角度2:样本与总体数据的估计4. (2023·长沙模拟)某校1 000名学生参加环保知识竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是( )A.频率分布直方图中a的值为0.004B.估计这20名学生考试成绩的第60百分位数为75C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[60,70)内的学生人数为150
【解析】 由频率分布直方图,得:10(2a+3a+7a+6a+2a)=1,解得a=0.005,故A错误;前三个矩形的面积和为10(2a+3a+7a)=0.6,∴这20名学生数学考试成绩的第60百分数为80,故B错误;这20名学生数学考试成绩的众数为75,故C错误;总体中成绩落在[60,70)内的学生人数为3a×10×1 000=150,故D正确.故选D.
5. (多选)(2023·台江区校级模拟)在某市高三年级举行的一次调研考试中,共有30 000人参加考试.为了解考生的某科成绩情况,抽取了样本容量为n的部分考生成绩,已知所有考生成绩均在[50,100],按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出如图所示的频率分布直方图.若在样本中,成绩落在区间[50,60)的人数为16,则由样本估计总体可知下列结论正确的为( )A.x=0.016B.n=1 000C.考生成绩的第70百分位数为76D.估计该市全体考生成绩的平均分为71
角度3:样本数据的数字特征6. (2023·河南三模)某学校对班级管理实行量化打分,每周一总结,若一个班连续5周的量化打分不低于80分,则为优秀班级.下列能断定该班为优秀班级的是( )A.某班连续5周量化打分的平均数为83,中位数为81B.某班连续5周量化打分的平均数为83,方差大于0C.某班连续5周量化打分的中位数为81,众数为83D.某班连续5周量化打分的平均数为83,方差为1
【解析】 根据题意,依次分析选项:对于A,若数据为88,87,81,80,79,满足平均数为83,中位数为81,但不能断定该班为优秀班级;对于B,若数据为88,87,81,80,79,满足平均数为83,其方差一定大于0,但不能断定该班为优秀班级;对于C,若数据为83,83,81,80,79,满足中位数为81,众数为83,但不能断定该班为优秀班级;对于D,设数据的最低分为x,若数据平均数为83,方差为1,则有(83-x)2<5,必有x>80,可以断定该班为优秀班级.故选D.
7. (2023·雁峰区校级模拟)若数据x1+m、x2+m、…、xn+m的平均数是5,方差是4,数据3x1+1、3x2+1、…、3xn+1的平均数是10,标准差是s,则下列结论正确的是( )A.m=2,s=6B.m=2,s=36C.m=4,s=6D.m=4,s=36
1.关于平均数、方差的计算(1)利用平均数、方差的性质可简化运算,要熟记.(2)方差描述一组数据围绕平均数波动的幅度.2.频率分布直方图中数字特征的计算(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
1. (2023·湖北模拟)云南某镇因地制宜,在政府的带领下,数字力量赋能乡村振兴,利用“农抬头”智慧农业平台,通过大数据精准分析柑橘等特色产业的生产数量、价格走势、市场供求等数据,帮助小农户找到大市场,开启“直播+电商”销售新模式,推进当地特色农产品“走出去”;通过“互联网+旅游”聚焦特色农产品、绿色食品、生态景区资源.下面是2022年7月到12月份该镇甲、乙两村销售收入统计数据(单位:百万):甲:5,6,6,7,8,16;乙:4,6,8,9,10,17.
根据上述数据,则( )A.甲村销售收入的第50百分位数为7百万B.甲村销售收入的平均数小于乙村销售收入的平均数C.甲村销售收入的中位数大于乙村销售收入的中位数D.甲村销售收入的方差大于乙村销售收入的方差
核心考点3 经验回归方程
(2023·济南模拟)第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第x天的滑雪人数y(单位:百人)的数据.
(1)根据第1至7天的数据分析,可用线性回归模型拟合y与x的关系,请用样本相关系数加以说明(保留两位有效数字);
(2023·吕梁三模)数据显示中国车载音乐已步入快速发展期,随着车载音乐的商业化模式进一步完善,市场将持续扩大,下表为2018—2022年中国车载音乐市场规模(单位:十亿元),其中年份2018—2022对应的代码分别为1~5.
(1)由上表数据知,可用指数函数模型y=a·bx拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.1);(2)综合考虑2023年及2024年的经济环境及疫情等因素,某预测公司根据上述数据求得y关于x的回归方程后,通过修正,把b-1.3作为2023年与2024年这两年的年平均增长率,请根据2022年中国车载音乐市场规模及修正后的年平均增长率预测2024年的中国车载音乐市场规模.
核心考点4 独立性检验
假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
(2023·全国一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:
(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布N(μ,σ2),其中μ近似为样本的平均数(每组数据取区间的中间值),且σ=6.1,若全校有3 000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);
(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,天数在[0,15]的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:
(2)由频数分布表知,锻炼活动的天数在[0,15]的人数为:4+15+33=52,∵参加“每天锻炼1小时”活动的天数在[0,15]的学生中有20名男生,∴参加“每天锻炼1小时”活动的天数在[0,15]的学生中有女生人数:52-20=32,由频数分布表知,锻炼活动的天数在(15,30]的人数为31+11+6=48,∵参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,∴参加“每天锻炼1小时”活动的天数在(15,30]的学生中有女生人数:48-30=18,
(2023·日照模拟)第五代移动通信技术(简称5G)是最新一代蜂窝移动通信技术,是实现人、机、物互联的网络基础设施.某市工信部门为了解本市5G手机用户对5G网络的满意情况,随机抽取了本市200名5G手机用户进行调查,所得情况统计如下:
(1)完成上述列联表,并估计本市5G手机用户对5G网络满意的概率;(2)依据小概率值α=0.05的独立性检验,分析本市5G手机用户对5G网络满意与年龄在50岁以下是否有关.附:
【解析】 (1)2×2列联表如下:
第3讲 统计与成对数据的分析
1. (2021·全国甲卷)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
【解析】 该地农户家庭年收入低于4.5万元的农户比率为(0.02+0.04)×1=0.06=6%,故选项A正确;该地农户家庭年收入不低于10.5万元的农户比率为(0.04+0.02×3)×1=0.1=10%,故选项B正确;估计该地农户家庭年收入的平均值为3×0.02+4×0.04+5×0.1+6×0.14+7×0.2+8×0.2+9×0.1+10×0.1+11×0.04+12×0.02+13×0.02+14×0.02=7.68>6.5万元,故选项C错误;家庭年收入介于4.5万元至8.5万元之间的频率为(0.1+0.14+0.2+0.2)×1=0.64>0.5,故估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间,故选项D正确.故选C.
2. (2022·全国甲卷)某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差
3. (2021·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
4. (2022·全国乙卷)某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m2)和材积量(单位:m3),得到如下数据:
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186 m2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
5. (2022·全国甲卷)甲、乙两城之间长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
6. (2023·全国乙卷理科)某厂为比较甲、乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为xi,yi(i=1,2,…,10).试验结果如下:
【解析】 (1)根据表中数据,计算zi=xi-yi(i=1,2,…,10),填表如下:
7. (2023·全国甲卷理科)为探究其药物对小鼠的生长抑制作用,将40只小鼠均分为两组,分别为对照组(不加药物)和实验组(加药物).(1)设其中两只小鼠中对照组小鼠数目为X,求X的分布列和数学期望;(2)测得40只小鼠体重如下(单位:g):(已按从小到大排好)对照组:17.3 18.4 20.1 20.4 21.5 23.224.6 24.8 25.0 25.4 26.1 26.3 26.426.5 26.8 27.0 27.4 27.5 27.6 28.3实验组:5.4 6.6 6.8 6.9 7.8 8.2 9.410.0 10.4 11.2 14.4 17.3 19.2 20.223.6 23.8 24.5 25.1 25.2 26.0
①求40只小鼠体重的中位数m,并完成下面2×2列联表:
②根据2×2列联表,能否有95%的把握认为药物对小鼠生长有抑制作用.参考数据:
角度1:简单随机抽样1.用简单随机抽样的方法从含有10个个体的总体中抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( )
2.我国古代数学名著《数书九章》中有“米谷粒分”问题:“开仓受纳,有甲户米一千五百三十四石到廊.验得米内夹谷,乃于样内取米一捻,数计二百五十四粒,内有谷二十八颗.今欲知米内杂谷多少.”意思是:官府开仓接受百姓纳粮,甲户交米1 534石到廊前,检验出米里夹杂着谷子,于是从米样粒取出一捻,数出共254粒,其中有谷子28颗,则这批米内有谷子约_________石(结果四舍五入保留整数).
角度2:分层随机抽样的应用3. (2023·上饶二模)为了支持民营企业发展壮大,帮助民营企业解决发展中的困难,某市政府采用分层抽样调研走访各层次的民营企业.该市的小型企业、中型企业、大型企业分别有900家、90家、10家.若大型企业的抽样家数是2,则中型企业的抽样家数应该是( )A.180B.90 C.18D.9【解析】 该市中型企业和大型企业的家数比为9∶1,由分层抽样的意义可得中型企业的抽样家数应该是9×2=18.故选C.
4. (2023·吴忠模拟)在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=( )A.15B.20 C.30D.60
1.简单随机抽样(1)简单随机抽样需满足:被抽取的样本总体的个体数有限;逐个抽取;等可能抽取.(2)简单随机抽样一般有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况)
1.下列抽取样本的方式属于简单随机抽样的个数为( )①从无限多个个体中抽取100个个体作为样本;②从20件玩具中一次性抽取3件进行质量检验;③某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1 C.2D.3
【解析】 ①不是简单随机抽样.因为被抽取样本的总体的个数是无限的,而不是有限的.②不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.③不是简单随机抽样.因为不是等可能抽样.故选A.
2. (2023·江西模拟)目前,甲型流感病毒在国内传播,据某市卫健委通报,该市流行的甲型流感病毒,以甲型H1N1亚型病毒为主,假如该市某小区共有100名感染者,其中有10名年轻人,60名老年人,30名儿童,现用分层抽样的方法从中随机抽取20人进行检测,则做检测的老年人人数为( )A.6B.10 C.12D.16
核心考点2 用样本估计总体
(4)百分位数①第p百分位数的定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据_____________这个值,且至少有____________________的数据大于或等于这个值.②计算一组n个数据的第p百分位数的步骤:第1步,按___________排列原始数据.第2步,计算i=___________.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第_____________项数据的平均数.
角度1:统计图表1. (2023·郑州三模)为了树立和践行绿水青山就是金山银山的理念,A市某高中全体教师于2023年3月12日开展植树活动,购买柳树、银杏、梧桐、樟树四种树苗共计600棵,比例如图所示.青年教师、中年教师、老年教师报名参加植树活动的人数之比为5∶3∶2,若每种树苗均按各年龄段报名人数的比例进行分配,则中年教师应分得梧桐的数量为( )A.30棵B.50棵C.72棵D.80棵
2. (2023·市中区校级二模)某调查机构抽取了部分关注济南地铁建设的市民作为样本,分析其年龄和性别结构,并制作出如下等高条形图.根据图中(35岁以上含35岁)的信息,关于该样本的结论不一定正确的是( )
A.男性比女性更关注地铁建设B.关注地铁建设的女性多数是35岁以上C.35岁以下的男性人数比35岁以上的女性人数多D.35岁以上的人对地铁建设关注度更高
【解析】 由等高条形图可得:由左图知,样本中男性数量多于女性数量,所以男性比女性更关注地铁建设,故A正确;由右图知女性中35岁以上的占多数,从而样本中多数女性是35岁以上,从而得到关注地铁建设的女性多数是35岁以上,故B正确;由左图知男性人数大于女性人数,由右图知35岁以下的男性占男性人数比35岁以上的女性占女性人数的比例少,所以无法判断35岁以下的男性人数与35岁以上的女性人数的多少,故C不一定正确;由右图知样本中35岁以上的人对地铁建设关注度更高,故D正确.故选C.
3. (2023·雁塔区校级模拟)某滑冰馆统计了某小区居民在该滑冰馆一个月的锻炼天数,得到如图所示的频率分布直方图(将频率视为概率),则下列说法正确的是( )
A.该小区居民在该滑冰馆的锻炼天数在区间(25,30]内的最少B.估计该小区居民在该滑冰馆的锻炼天数超过15天的概率为0.465C.估计该小区居民在该滑冰馆的锻炼天数的中位数为16D.估计小区居民在该滑冰馆的锻炼天数的平均值为15
角度2:样本与总体数据的估计4. (2023·长沙模拟)某校1 000名学生参加环保知识竞赛,随机抽取了20名学生的考试成绩(单位:分),成绩的频率分布直方图如图所示,则下列说法正确的是( )A.频率分布直方图中a的值为0.004B.估计这20名学生考试成绩的第60百分位数为75C.估计这20名学生数学考试成绩的众数为80D.估计总体中成绩落在[60,70)内的学生人数为150
【解析】 由频率分布直方图,得:10(2a+3a+7a+6a+2a)=1,解得a=0.005,故A错误;前三个矩形的面积和为10(2a+3a+7a)=0.6,∴这20名学生数学考试成绩的第60百分数为80,故B错误;这20名学生数学考试成绩的众数为75,故C错误;总体中成绩落在[60,70)内的学生人数为3a×10×1 000=150,故D正确.故选D.
5. (多选)(2023·台江区校级模拟)在某市高三年级举行的一次调研考试中,共有30 000人参加考试.为了解考生的某科成绩情况,抽取了样本容量为n的部分考生成绩,已知所有考生成绩均在[50,100],按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出如图所示的频率分布直方图.若在样本中,成绩落在区间[50,60)的人数为16,则由样本估计总体可知下列结论正确的为( )A.x=0.016B.n=1 000C.考生成绩的第70百分位数为76D.估计该市全体考生成绩的平均分为71
角度3:样本数据的数字特征6. (2023·河南三模)某学校对班级管理实行量化打分,每周一总结,若一个班连续5周的量化打分不低于80分,则为优秀班级.下列能断定该班为优秀班级的是( )A.某班连续5周量化打分的平均数为83,中位数为81B.某班连续5周量化打分的平均数为83,方差大于0C.某班连续5周量化打分的中位数为81,众数为83D.某班连续5周量化打分的平均数为83,方差为1
【解析】 根据题意,依次分析选项:对于A,若数据为88,87,81,80,79,满足平均数为83,中位数为81,但不能断定该班为优秀班级;对于B,若数据为88,87,81,80,79,满足平均数为83,其方差一定大于0,但不能断定该班为优秀班级;对于C,若数据为83,83,81,80,79,满足中位数为81,众数为83,但不能断定该班为优秀班级;对于D,设数据的最低分为x,若数据平均数为83,方差为1,则有(83-x)2<5,必有x>80,可以断定该班为优秀班级.故选D.
7. (2023·雁峰区校级模拟)若数据x1+m、x2+m、…、xn+m的平均数是5,方差是4,数据3x1+1、3x2+1、…、3xn+1的平均数是10,标准差是s,则下列结论正确的是( )A.m=2,s=6B.m=2,s=36C.m=4,s=6D.m=4,s=36
1.关于平均数、方差的计算(1)利用平均数、方差的性质可简化运算,要熟记.(2)方差描述一组数据围绕平均数波动的幅度.2.频率分布直方图中数字特征的计算(1)最高的小长方形底边中点的横坐标即是众数.(2)中位数左边和右边的小长方形的面积和是相等的.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.
1. (2023·湖北模拟)云南某镇因地制宜,在政府的带领下,数字力量赋能乡村振兴,利用“农抬头”智慧农业平台,通过大数据精准分析柑橘等特色产业的生产数量、价格走势、市场供求等数据,帮助小农户找到大市场,开启“直播+电商”销售新模式,推进当地特色农产品“走出去”;通过“互联网+旅游”聚焦特色农产品、绿色食品、生态景区资源.下面是2022年7月到12月份该镇甲、乙两村销售收入统计数据(单位:百万):甲:5,6,6,7,8,16;乙:4,6,8,9,10,17.
根据上述数据,则( )A.甲村销售收入的第50百分位数为7百万B.甲村销售收入的平均数小于乙村销售收入的平均数C.甲村销售收入的中位数大于乙村销售收入的中位数D.甲村销售收入的方差大于乙村销售收入的方差
核心考点3 经验回归方程
(2023·济南模拟)第24届冬奥会于2022年2月4日在北京市和张家口市联合举行,此项赛事大大激发了国人冰雪运动的热情.某滑雪场在冬奥会期间开业,下表统计了该滑雪场开业第x天的滑雪人数y(单位:百人)的数据.
(1)根据第1至7天的数据分析,可用线性回归模型拟合y与x的关系,请用样本相关系数加以说明(保留两位有效数字);
(2023·吕梁三模)数据显示中国车载音乐已步入快速发展期,随着车载音乐的商业化模式进一步完善,市场将持续扩大,下表为2018—2022年中国车载音乐市场规模(单位:十亿元),其中年份2018—2022对应的代码分别为1~5.
(1)由上表数据知,可用指数函数模型y=a·bx拟合y与x的关系,请建立y关于x的回归方程(a,b的值精确到0.1);(2)综合考虑2023年及2024年的经济环境及疫情等因素,某预测公司根据上述数据求得y关于x的回归方程后,通过修正,把b-1.3作为2023年与2024年这两年的年平均增长率,请根据2022年中国车载音乐市场规模及修正后的年平均增长率预测2024年的中国车载音乐市场规模.
核心考点4 独立性检验
假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:
(2023·全国一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:
(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布N(μ,σ2),其中μ近似为样本的平均数(每组数据取区间的中间值),且σ=6.1,若全校有3 000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);
(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,天数在[0,15]的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:
(2)由频数分布表知,锻炼活动的天数在[0,15]的人数为:4+15+33=52,∵参加“每天锻炼1小时”活动的天数在[0,15]的学生中有20名男生,∴参加“每天锻炼1小时”活动的天数在[0,15]的学生中有女生人数:52-20=32,由频数分布表知,锻炼活动的天数在(15,30]的人数为31+11+6=48,∵参加“每天锻炼1小时”活动的天数在(15,30]的学生中有30名男生,∴参加“每天锻炼1小时”活动的天数在(15,30]的学生中有女生人数:48-30=18,
(2023·日照模拟)第五代移动通信技术(简称5G)是最新一代蜂窝移动通信技术,是实现人、机、物互联的网络基础设施.某市工信部门为了解本市5G手机用户对5G网络的满意情况,随机抽取了本市200名5G手机用户进行调查,所得情况统计如下:
(1)完成上述列联表,并估计本市5G手机用户对5G网络满意的概率;(2)依据小概率值α=0.05的独立性检验,分析本市5G手机用户对5G网络满意与年龄在50岁以下是否有关.附:
【解析】 (1)2×2列联表如下:
相关课件
更多