山西省大同市云冈区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析,答案不全)
展开
这是一份山西省大同市云冈区2022-2023学年八年级上学期期末模拟测试数学试卷(含解析,答案不全),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
1. 下列图形中,轴对称图形的个数是( )
A. 1个B. 2个C. 3个D. 4个
2. 人体中枢神经系统中含有1千亿个神经元.某个神经元的直径约为52微米,52微米为5.2 × 10-5米. 将5.2 × 10-5用小数表示为( )
A. 0.00052B. 0.000052C. 0.0052D. 0.0000052
3. 下列计算正确的是( )
A. x•x3=x4B. x4+x4=x8C. (x2)3=x5D. x﹣1=﹣x
4. 若实数a,b满足a2-4a+4+(b-4)2=0,且a,b恰好是等腰△ABC两条边的长,则△ABC周长为( )
A. 8B. 8或10C. 12D. 10
5. 若分式有意义,则x的取值范围是( )
A. x≠2B. x≠±2C. x≠﹣2D. x≥﹣2
6. 一个正多边形,它的一个内角恰好是一个外角的5倍,则这个正多边形的边数是( )
A. 十二B. 十一C. 十D. 九
7. 若,,则的值为( )
A. 4B. -4C. D.
8. 若是完全平方式,则m的值为( )
A. 3B. C. 7D. 或7
9. 如图,把长方形纸片纸沿对角线折叠,设重叠部分为△,那么,下列说法错误的是( )
A. △是等腰三角形,
B. 折叠后∠ABE和∠CBD一定相等
C. 折叠后得到的图形是轴对称图形
D. △EBA和△EDC一定是全等三角形
10. 已知甲做360个零件与乙做480个零件所用的时间相同,两人每天共做140个零件,设甲每天做x个零件,根据题意,可列方程为( )
A. B.
C. D.
二.填空题(共5题,总计 15分)
11. 因式分解:____________
12. 将下列多项式分解因式,结果中不含因式的是_________(填上你认为正确的序号).①;②;③;④.
13. 计算÷=__________.
14. 如图,中,,,分别以点,为圆心,以大于的长为半径画弧交于点,,直线交于点,交于点.若,则__.
15. 如图,已知∠AOB=30°,点P在边OA上,OP=14,点E,F在边OB上,PE=PF,EF=6.若点D是边OB上一动点,则∠PDE=45°时,DF的长为_____.
三.解答题(共8题,总计75分)
16. (1)计算:
(2)雯雯在计算时,解答过程如下:
雯雯的解答从第______步开始出错,请写出正确的解题过程.
17. 先化简:,再从0,2,3三个数中任选一个你喜欢的数代入求值.
18. 如图,在平面直角坐标系中,每个小正方形的边长均为1,点A的坐标为(﹣2,3).点B的坐标为(﹣3,1),点C的坐标为(1,﹣2).
(1)作出△ABC关于y轴对称的△A'B'C'.其中A',B',C'分别是A,B,C的对应点,不要求写作法;
(2)在x轴上找一点P,使得PB+PA的值最小.(不要求写作法)
19. 如图,已知BF⊥AC于F,CE⊥AB于E,BF交CE于D,且BD=CD,求证:点D在∠BAC的平分线上.
20. 已知,如图,为等边三角形,,AD,BE相交于点P,于Q.
(1)求证:;
(2)求的度数;
(3)若,,求AD的长.
21. 实践与探索
如图1,边长为的大正方形有一个边长为的小正方形,把图1中的阴影部分拼成一个长方形(如图2所示)
(1)上述操作能验证的等式是__________;(请选择正确的一个)
A. B. C.
(2)请应用这个公式完成下列各题:
①已知,,则__________.
②计算:
22. 文具店王老板用180元购进一批文具,很快售完;王老板又用600元购进第二批文具,所购套数是第一批的3倍,但进价比第一批每套多了2元.
(1)第二批文具每套进价多少元?
(2)王老板以每本25元的价格销售第二批文具,售出后,为了尽快售完,决定打折促销,要使第二批文具的销售总利润不少于60元,剩余的文具每套售价最低打几折?
23. 阅读理解】
课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB的理由是_____.
A.SSS B.SAS C.AAS D.HL
(2)求得AD的取值范围是______.
A.6<AD<8 B.6≤AD≤8 C.1<AD<7 D.1≤AD≤7
感悟】
解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散已知条件和所求证的结论集合到同一个三角形中.
问题解决】
(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF.
大同市云冈区2022-2023学年八年级(上)数学期末模拟测试
参考答案及解析
一.选择题
1.解析:C
解析:解:第1个是轴对称图形;
第2个是轴对称图形;
第3个不是轴对称图形;
第4个是轴对称图形;
故选C.
2.解析:B
解析:解:
故选B
2.解析:A
解析:解:A. x•x3=x4,正确;
B. x4+x4=2x4,原式错误;
C.(x2)3=x6,原式错误;
D. x-1=,原式错误;
故选:A.
4.解析:D
解析:解:∵a2-4a+4+(b-4)2=0,
∴(a-2)2+(b-4)2=0,
∴a−2=0,b−4=0,
解得:a=2,b=4,
当a=2作腰时,三边为2,2,4,不符合三角形三边关系定理;
当n=4作腰时,三边为2,4,4,符合三角形三边关系定理,周长为:2+4+4=10.
故选:D.
5.解析:B
解析:解:分式有意义,则,即,
故选:B
6.解析:A
解析:解:一个正多边形,它的一个内角恰好是一个外角的5倍,且一个内角与一个外角的和为,
这个正多边形的每个外角都相等,且外角的度数为,
这个正多边形的边数为,
故选:A.
7.解析:A
解析:因为,
所以,
因为,
所以,
联立方程组可得:
解方程组可得,
所以,
故选A.
8.解析:D
解析:∵关于x的二次三项式是一个完全平方式,
∴m-2=±1×5,
∴m=7或-3,故D正确.
故选:D.
9.解析:B
解析:∵四边形ABCD为长方形
∴∠BAE=∠DCE=90°,AB=CD,
在△EBA和△EDC中,
∵∠AEB=∠CED,∠BAE=∠DCE, AB=CD,
∴△EBA≌△EDC (AAS),
∴BE=DE,
∴△EBD为等腰三角形,
∴折叠后得到的图形是轴对称图形,
故A、C、D正确,
无法判断∠ABE和∠CBD是否相等,B选项错误;
故选B.
10.解析:A
解析:设甲每天做x个零件,根据题意得:
;
故选A.
二. 填空题
11.解析:
解析:解:
故答案为:.
12.解析:④
解析:解:①,含因式;
②,含因式;
③,含因式;
④,不含因式;
故答案为:④.
13.解析:-2
解析:解:原式==-2,
故答案为:-2.
14.解析: 6
解析:连接,如图,
由作法得垂直平分,
,
,
,
,
,
.
故答案为:6.
15.解析: 4或10
解析:解:如图,过点P作PH⊥OB于点H,
∵PE=PF,
∴EH=FH=EF=3,
∵∠AOB=30°,OP=14,
∴PH=OP=7,
当点D运动到点F右侧时,
∵∠PDE=45°,
∴∠DPH=45°,
∴PH=DH=7,
∴DF=DH﹣FH=7﹣3=4;
当点D运动到点F左侧时,
D′F=D′H+FH=7+3=10.
所以DF的长为4或10.
故答案为4或10.
三.解答题
16解析:
(1);(2)一,见解析
解析:
(1)
;
(2)一,
m(1+m)−(m−1)2
=m+m2−(m2−2m+1)
=m+m2−m2+2m−1
=3m−1.
17解析:
x﹣3;﹣3.
解析:
原式=
=
=
=x﹣3.
由于分母不能为0,除式不能为0,
∴x≠2,x≠3,
∴x=0.
当x=0时,原式=0﹣3=﹣3.
18解析:
(1)如图,△A'B'C'即所求作.见解析;(2)如图,点P即为所求作,见解析.
解析:
(1)如图,△A'B'C'即为所求作.
(2)如图,点P即为所求作.
19解析:
见解析
解析:
证明:∵BF⊥AC,CE⊥AB,
∴∠DEB=∠DFC=90°,
在△DBE和△DCF中,
,
∴△DBE≌△DCF(AAS),
∴DE=DF,
又∵BF⊥AC,CE⊥AB,垂足分别为F、E,
∴D点在∠BAC的平分线上
20 略
21解析:
(1)A;(2)①4;②5050
解析:
(1)图1表示,图2的面积表示,两个图形阴影面积相等,得到
故选A ;
(2)①
∵
∴,解得
②原式=(1002-992)+(982-972)+…+(42-32)+(22-12)
=(100+99)(100-99)+(98+97)(98-97)+…+(4+3)(4-3)+(2+1)(2-1)
=100+99+98+97+…+4+3+2+1
=101×50
=5050
22解析:
(1)20元 (2)七折
解析:
小问1解析
解:设第二批文具每套进价为元,则第一批每套进价为元,由题意得:
解得:,
经检验,为原分式方程的解.
答:第二批文具每套进价为20元.
小问2解析
解:第二批文具的套数为:(套)
设剩余的文具每套打折,由题意得:
解得:,
答:剩余的文具每套最低打七折.
23解析:
(1)B;(2)C;(3)证明见解析.
解析:
(1)解:在△ADC和△EDB中
,
∴△ADC≌△EDB(SAS),
故选B;
(2)解:如图:
∵由(1)知:△ADC≌△EDB,
∴BE=AC=6,AE=2AD,
∵在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,
∴1<AD<7,
故选C.
(3)延长AD到M,使AD=DM,连接BM,
∵AD是△ABC中线,
∴CD=BD,
∵在△ADC和△MDB中
∴△ADC≌△MDB,
∴BM=AC,∠CAD=∠M,
∵AE=EF,
∴∠CAD=∠AFE,
∵∠AFE=∠BFD,
∴∠BFD=∠CAD=∠M,
∴BF=BM=AC,
即AC=BF.
…………第一步
…………第二步
…………第三步
相关试卷
这是一份2023-2024学年山西省大同市云冈区数学九上期末经典模拟试题含答案,共8页。试卷主要包含了若x=2y,则的值为,设A,方程的解是等内容,欢迎下载使用。
这是一份山西省朔州市平鲁区2022-2023学年八年级上学期期末模拟测试数学试卷(答案不全),共15页。试卷主要包含了选择题等内容,欢迎下载使用。
这是一份山西省大同市广灵县2022-2023学年八年级上学期期末模拟测试数学试卷(答案不全),共19页。试卷主要包含了选择题等内容,欢迎下载使用。