六年级奥数——设数法解题(学生版)
展开
这是一份六年级奥数——设数法解题(学生版),共7页。试卷主要包含了五年级三个班的人数相等,小王在一个小山坡来回运动,小王骑摩托车往返A等内容,欢迎下载使用。
读懂题目表达的意思;
能够快速找出所给题目中缺少的条件;
能够设出所缺条件,列出式子求解。
知识梳理
在小学数学竞赛中,常常会遇到一些看起来缺少条件的题目,按常规解法似乎无解,但仔细分析就会发现,题目中缺少的条件对于答案并无影响,这时就可以采用“设数代入法”,即对题目中“缺少”的条件,随便假设一个数代入(当然假设的这个数要尽量的方便计算),然后求出解答。
典例分析
例1、如果△△=□□□,△☆=□□□□,那么☆☆□=( )个△。
例2、五个人比较身高,甲比乙高3厘米,乙比丙矮7厘米,丙比丁高10厘米,丁比戊矮5厘米,甲与戊谁高,高几厘米?
例3、足球门票15元一张,降价后观众增加一倍,收入增加1/5,问一张门票降价多少元?
例4、五年级三个班的人数相等。一班的男生人数和二班的女生人数相等,三班的男生是全部男生的2/5,全部女生人数占全年级人数的几分之几?
例5、小王在一个小山坡来回运动。先从山下跑上山,每分钟跑200米,再从原路下山,每分钟跑240米,又从原路上山,每分钟跑150米,再从原路下山,每分钟跑200米,求小王的平均速度?
例6、小王骑摩托车往返A、B两地。平均速度为每小时48千米,如果他去时每小时行42千米,那么他返回时的平均速度是每小时行多少千米?
例7、某幼儿园中班的小朋友平均身高115厘米,其中男孩比女孩多1/5,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
例8、某班男生人数是女生的4/5,女生的平均身高比男生高15%,全班的平均身高是130厘米,求男、女生的平均身高各是多少?
例9、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问狗再跑多远,马可以追到它?
例10、猎狗前面26步远的地方有一野兔,猎狗追之。兔跑8步的时间狗只跑5步,但兔跑9步的距离仅等于狗跑4步的距离。问兔跑几步后,被狗抓获?
实战演练
课堂狙击
1、甲、乙、丙三个仓库原有同样多的货,从甲仓库运60吨到乙仓库,从乙仓库运45吨到丙仓库,从丙仓库运55吨到甲仓库,这时三个仓库的货哪个最多?哪个最少?最多的比最少的多多少吨?
2、某班一次考试,平均分为70分,其中3/4及格,及格的同学平均分为80分,那么不及格的同学平均分是多少分?
3、游泳池里参加游泳的学生中,小学生占30%,又来了一批学生后,学生总数增加了20%,小学生占学生总数的40%,小学生增加百分之几?
4、小华上山的速度是每小时3千米,下山的速度是每小时6千米,求上山后又沿原路下山的平均速度。
5、某班男生人数是女生的2/3,男生平均身高为138厘米,全班平均身高为132厘米。问:女生平均身高是多少厘米?
6、一个长方形每边增加10%,那么它的周长增加百分之几?它的面积增加百分之几?
7、猎人带猎狗去捕猎,发现兔子刚跑出40米,猎狗去追兔子。已知猎狗跑2步的时间兔子跑3步,猎狗跑4步的距离与兔子跑7步的距离相等,求兔再跑多远,猎狗可以追到它?
8、狗和兔同时从A地跑向B地,狗跑3步的距离等于兔跑5步的距离,而狗跑2步的时间等于兔跑3步的时间,狗跑600步到达B地,这时兔还要跑多少步才能到达B地?
课后反击
1、有一批饼干平均分给幼儿园大、小两个班,每人分得12块。如果只分给大班的同学,每人可分得21块;如果只分给小班的同学,每人分得多少块?
2、有一批苹果分给幼儿园大、小两个班的小朋友,平均每人可得6个,如果分给大班小朋友,平均每人可得10个。如果只分给小班小朋友,每人平均可得几个?
3、张老师去买课桌椅,他带的钱只买课桌可买40张,只买椅子可买60把,一张课桌配一把椅子为一套,那么最多可买课桌椅多少套?
4、某班女同学的人数是男同学的一半。男同学的平均体重是42千克,女同学的平均体重是39千克。全班同学的平均体重是多少千克?
5、张师傅骑自行车往返A、B两地。去时每小时行15千米,返回时因逆风,每小时只行10千米,张师傅往返途中的平均速度是每小时多少千米?
6、某班同学的平均身高138厘米,其中男孩比女孩多1/5,女孩平均身高比男孩高10%,这个班男孩平均身高是多少?
7、五年级三个班的人数相等。一班的男生人数和二班的女生人数相等,三班的男生是全部男生的2/5,全部女生人数占全年级人数的几分之几?
名师点拨
在小学奥数中,对于某些题目中看似缺少已知量的,我们通常通过设出某些量,譬如:班上学生人数、仓库存货量、单程距离等等,当我们设出量后便可以把它当作已知的条件使用,这样题目就会变得简单明了了。
学霸经验
本节课我学到了
我需要努力的地方是
相关试卷
这是一份五年级奥数——作图法解题(学生版),共6页。试卷主要包含了专题引入,差量系顺推等内容,欢迎下载使用。
这是一份六年级奥数——同余法解题(学生版),共14页。试卷主要包含了带余除法的定义及性质,三大余数定理,中国剩余定理等内容,欢迎下载使用。
这是一份六年级奥数——同余法解题(含答案),共17页。试卷主要包含了带余除法的定义及性质,三大余数定理,中国剩余定理等内容,欢迎下载使用。