终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    第十一届希望杯全国数学邀请赛四年级试卷附答案2

    立即下载
    加入资料篮
    第十一届希望杯全国数学邀请赛四年级试卷附答案2第1页
    第十一届希望杯全国数学邀请赛四年级试卷附答案2第2页
    第十一届希望杯全国数学邀请赛四年级试卷附答案2第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    第十一届希望杯全国数学邀请赛四年级试卷附答案2

    展开

    这是一份第十一届希望杯全国数学邀请赛四年级试卷附答案2,共10页。试卷主要包含了填空题,解答题每题都要写出推算过程.等内容,欢迎下载使用。
    一、填空题(每题5分,共60分)
    1.(5分)111÷3+222÷6+333÷9= .
    2.(5分)如果一个数的两倍减去这个数的一半,得2013,那么这个数是 .
    3.(5分)如图,当n=1时,有2个小星星;当n=2时,有6个小星星;当n=3时,有12个小星星;…;则当n=10时,有 个小星星.
    4.(5分)某工程队第一个月安装路灯1200盏,第二个月安装路灯1300盏,此时,还剩500盏路灯未安装,那么已安装路灯的总数是未安装路灯数量的 倍.
    5.(5分)用1722除以一个两位数,小明在计算的时候错把这个两位数的十位数字和个位数字写反了,得到的错误结果是42,则正确的结果应该是 .
    6.(5分)如果一个小于100的自然数除以3,除以4,除以5都余2,那么这个数最小是 ,最大是 .
    7.(5分)在一个大盒子里有一个中盒子,中盒子里有一个小盒子.将100个弹球放入盒中,其中n个弹球在大盒子里而不在中盒子里,m个弹球在中盒子里而不在小盒子里.如果用m和n表示小盒子里弹球的个数应当是 .
    8.(5分)按规定,晓明这学期数学的综合测评成绩等于4次测验平均分的一半与期末考试成绩的一半之和.已知4次测验的成绩分别是90分,85分,77分,96分.若晓明要使综合测评成绩不低于90分,则他在期末考试中至少要考 分.
    9.(5分)在一次义卖活动中,王刚卖柠檬水和热巧克力共400杯,得款546元.如果柠檬水1元/杯,热巧克力2元/杯,那么王刚在这次义卖活动中卖出了 杯柠檬水.
    10.(5分)将6个球排成一行,1,2,3号是黑球,4,5,6号是白球,如图1.若将2号和5号对调,则6个球变成黑白相间排列,如图2.现有20个球按序号顺次排成一行,1至10号是黑球,11至20号是白球,如果要使这20个球变成黑白相间的排列,那么最少要对调 次.
    11.(5分)将12个长4厘米,宽3厘米的长方形纸板拼接成一个大的长方形(包含正方形),拼接时,要使得没有重叠部分并且不中空,那么,拼成的长方形的周长最短是 厘米,最长是 厘米.
    12.(5分)一批学生参加植树活动,若1名女生和2名男生分为一组,则多15名男生;若1名女生和3名男生分为一组,则多6名女生.那么,参加植树活动的男生有 名,女生有 名.
    二、解答题(每题15分,共60分)每题都要写出推算过程.
    13.(15分)王师傅原计划从周长为400米的环形路面上的A点处开始,每隔50米安装一盏路灯,每盏灯都需要挖一个洞,用它埋灯柱.
    (1)按照原计划,王师傅需要挖多少个洞?
    (2)王师傅按原计划挖好所有的洞后觉得路灯的间隔太远,决定改为从A点处开始每隔40米安装一盏路灯,这样,王师傅还需要再挖几个洞?
    14.(15分)A、B、C三名同学共叠了1000只纸鹤,已知A叠的比B叠的3倍少100只,C叠的比A叠的少67只,问:A叠了多少只纸鹤?
    15.(15分)109T 次列车19:33从北京出发,次日10:26到达上海;1461次列车11:58从北京出发,次日8:01到达上海.问:这两次列的运行的时间相差多少分钟?
    16.(15分)李叔叔承包了12亩水稻田,亩产量是660千克.林阿姨比李叔叔少承包2亩水稻田,水稻的总产量比李叔叔的少420千克.问:
    (1)李叔叔的水稻总产量是多少千克?
    (2)李叔叔的水稻亩产量比林阿姨的少多少千克?
    第十一届小学“希望杯”全国数学邀请赛试卷
    (四年级第2试)
    参考答案与试题解析
    一、填空题(每题5分,共60分)
    1.(5分)111÷3+222÷6+333÷9= 111 .
    【分析】根据商不变规律可得111÷3+111÷3+111÷3=111×3÷3,依此计算即可求解.
    【解答】解:111÷3+222÷6+333÷9
    =111÷3+111÷3+111÷3
    =111×3÷3
    =111.
    故答案为:111.
    【点评】考查了四则混合运算中的巧算,关键是灵活运用商不变规律.
    2.(5分)如果一个数的两倍减去这个数的一半,得2013,那么这个数是 1342 .
    【分析】一个数的两倍减去这个数的一半,也就是这个数的2﹣=1是2013,依据除法意义即可解答.
    【解答】解:2013÷(2﹣)
    =2013
    =1342;
    答:这个数是1342.
    故答案为:1342.
    【点评】解答本题的关键是明确:一个数的两倍减去这个数的一半,实际就是求这个数的2﹣=1.
    3.(5分)如图,当n=1时,有2个小星星;当n=2时,有6个小星星;当n=3时,有12个小星星;…;则当n=10时,有 110 个小星星.
    【分析】首先找出第n个图形含有小星星的个数规律,利用规律进一步解答问题.
    【解答】解:当n=1时,有1×2=2个小星星;
    当n=2时,有2×(2+1)=6个小星星;
    当n=3时,有3×(3+1)=12个小星星;
    …;
    第n个图有n(n+1)个小星星;
    所以当n=10时,有10×(10+1)=110个小星星.
    故答案为:110.
    【点评】根据数字和图形的特点,找出题目蕴含的规律,找出规律,利用规律解决问题.
    4.(5分)某工程队第一个月安装路灯1200盏,第二个月安装路灯1300盏,此时,还剩500盏路灯未安装,那么已安装路灯的总数是未安装路灯数量的 5 倍.
    【分析】先计算出已安装路灯的总数,即1200+1300=2500盏,再据除法的意义即可得解.
    【解答】解:(1200+1300)÷500
    =2500÷500
    =5(倍);
    答:已安装路灯的总数是未安装路灯数量的5倍.
    故答案为:5.
    【点评】先计算出已安装路灯的总数,是解答本题的关键.
    5.(5分)用1722除以一个两位数,小明在计算的时候错把这个两位数的十位数字和个位数字写反了,得到的错误结果是42,则正确的结果应该是 123 .
    【分析】根据被除数和错误的商,求出看错了的除数,进而把看错了的除数的十位上的数和个位上的数颠倒位置,求出正确的除数,进而求出正确的商.
    【解答】解:1722÷42=41,
    所以正确的除数是14,
    1722÷14=123;
    答:正确的结果应该是123.
    故答案为:123.
    【点评】解决此题关键是先求出看错了的除数,进而得出正确的除数,再用被除数÷除数=商.
    6.(5分)如果一个小于100的自然数除以3,除以4,除以5都余2,那么这个数最小是 2 ,最大是 62 .
    【分析】一个数自然数除以3,除以4,除以5都余2,这个数就是比3、4、5的最小公倍数多2的数.
    【解答】解:3、4、5的最小公倍数是60,
    60+2=62,
    这个数最小是2,小于100的自然数最大也是62,
    答:这个数最小是2,最大是62.
    故答案为:2,62.
    【点评】本题的主要考查了学生根据同余定理来解答问题的能力.
    7.(5分)在一个大盒子里有一个中盒子,中盒子里有一个小盒子.将100个弹球放入盒中,其中n个弹球在大盒子里而不在中盒子里,m个弹球在中盒子里而不在小盒子里.如果用m和n表示小盒子里弹球的个数应当是 100﹣m﹣n .
    【分析】因为其中n个弹球在大盒子里而不在中盒子里,同时也不在小盒子里面,m个弹球在中盒子里而不在小盒子里所以用总数减去这两个部分就是所得的结论.
    【解答】解:根据题意小盒子里弹球的个数为100﹣m﹣n个.
    【点评】注意语言叙述所表示的含义,进一步理清数据解决问题.
    8.(5分)按规定,晓明这学期数学的综合测评成绩等于4次测验平均分的一半与期末考试成绩的一半之和.已知4次测验的成绩分别是90分,85分,77分,96分.若晓明要使综合测评成绩不低于90分,则他在期末考试中至少要考 93 分.
    【分析】先求出4次测验的平均分,已知这学期数学的综合测评成绩等于4次测验平均分的一半与期末考试成绩的一半之和.用综合测评成绩减去测验的平均分的,然后再除以即可.
    【解答】解:测验的平均分:
    (90+85+77+96)÷4
    =384÷4
    =87(分);
    87×=43.5(分);
    (90﹣43.5)
    =46.5×2
    =93(分);
    答:他在期末考试中至少要考93分.
    故答案为:93.
    【点评】本题考查的是加权平均数的求法.关键是求出4次测验的平均分,进而求出期末考试中的成绩.
    9.(5分)在一次义卖活动中,王刚卖柠檬水和热巧克力共400杯,得款546元.如果柠檬水1元/杯,热巧克力2元/杯,那么王刚在这次义卖活动中卖出了 254 杯柠檬水.
    【分析】假设400杯全是热巧克力,则得款400×2=800元,这比已知的546元多800﹣546=254元,因为一杯热巧克力比一杯柠檬水贵2﹣1=1元,所以可得柠檬水有254杯,据此即可解答.
    【解答】解:(400×2﹣546)÷(2﹣1),
    =254÷1,
    =254(杯),
    答:王刚在这次义卖活动中卖出了254杯柠檬水.
    故答案为:254.
    【点评】此题属于鸡兔同笼问题,采用假设法即可解答.
    10.(5分)将6个球排成一行,1,2,3号是黑球,4,5,6号是白球,如图1.若将2号和5号对调,则6个球变成黑白相间排列,如图2.现有20个球按序号顺次排成一行,1至10号是黑球,11至20号是白球,如果要使这20个球变成黑白相间的排列,那么最少要对调 5 次.
    【分析】由题意知,6个球(3黑、3白)只各自中间的球对调一次即成黑白相间排列,即中间的2个不动,剩下的4个对调1次即可,由此可把这样的4个球看作一个周期,如果要使这20个球(10黑、10白)变成黑白相间的排列,除了中间的2个外还有20﹣2=18个,18÷4=4(次)…2(个),可知最少要对调4+1=5次;据此解答.
    【解答】解:6个球(3黑、3白),中间的2个不动,剩下的4个对调1次即可,
    20﹣2=18(个)
    18÷4=4(次)…2(个)
    4+1=5(次)
    答:最少要对调5次可使20个球变成黑白相间的排列.
    故答案为:5.
    【点评】明确每6个球(3黑、3白)只各自中间的球对调一次即成黑白相间排列,即把这样的4个球看作一个周期,按周期性问题来解答是本题的关键.
    11.(5分)将12个长4厘米,宽3厘米的长方形纸板拼接成一个大的长方形(包含正方形),拼接时,要使得没有重叠部分并且不中空,那么,拼成的长方形的周长最短是 48 厘米,最长是 102 厘米.
    【分析】拼成的长方形的周长最短,则要求在拼接过程中,长方形共边尽量多且尽量共长边,而且长与宽的差尽量的小(或者拼成一个正方形);
    拼成的长方形的周长最长,则要求在拼接过程中,长方形共边尽量少且尽量共短边;据此解答.
    【解答】解:拼成的长方形的周长最短如图:
    这是一个边长是3×4=12厘米的正方形,它的周长是:
    12×4=48(厘米);
    拼成的长方形的周长最长如图:
    它的长是:12×4=48(厘米)
    宽是:3厘米;
    周长是:(48+3)×2=102(厘米).
    故答案为:48,102.
    【点评】找出周长最长和最短的拼组的方法是解决本题的关键.
    12.(5分)一批学生参加植树活动,若1名女生和2名男生分为一组,则多15名男生;若1名女生和3名男生分为一组,则多6名女生.那么,参加植树活动的男生有 81 名,女生有 33 名.
    【分析】根据题意知:多6名女生就少3×6=18名男生,就是每组多分3﹣2=1名男生,就需要15+18=33名男生,据此可求出组数,进而可求出男生人数和女生人数.据此解答.
    【解答】解:(15+6×3)÷(3﹣2)
    =(15+18)÷1
    =33÷1
    =33(组);
    33×1=33(名)
    33×2+15
    =66+15
    =81(名);
    答:男生有81名,女生有33名.
    故答案为:81,33.
    【点评】本题的难点是多6名女生就少3×6=18名男生.
    二、解答题(每题15分,共60分)每题都要写出推算过程.
    13.(15分)王师傅原计划从周长为400米的环形路面上的A点处开始,每隔50米安装一盏路灯,每盏灯都需要挖一个洞,用它埋灯柱.
    (1)按照原计划,王师傅需要挖多少个洞?
    (2)王师傅按原计划挖好所有的洞后觉得路灯的间隔太远,决定改为从A点处开始每隔40米安装一盏路灯,这样,王师傅还需要再挖几个洞?
    【分析】(1)用400除以间距50米即可;
    (2)用400除以40求出挖的总个数,然后求出50和40的最小公倍数是200,所以不动的个数是400÷200=2个,所以需要再挖:400÷40﹣2=8(个).
    【解答】(1)400÷50=8(个)
    答:按照原计划,王师傅需要挖8个洞.
    (2)50和40的最小公倍数是200
    400÷40﹣400÷200
    =10﹣2
    =8(个)
    答:王师傅还需要再挖8个洞.
    【点评】本题考查了植树问题,知识点是:植树的棵数=间隔数(在环形上栽),本题难点是确定不动的棵数.
    14.(15分)A、B、C三名同学共叠了1000只纸鹤,已知A叠的比B叠的3倍少100只,C叠的比A叠的少67只,问:A叠了多少只纸鹤?
    【分析】设B叠了x只千纸鹤,则A叠了3x﹣100只,C叠了3x﹣100﹣67只,最后根据“A、B、C三名同学一起叠了1000只千纸鹤”,列出方程解答即可.
    【解答】解:设B叠了x只千纸鹤,则A叠了3x﹣100只,C叠了3x﹣100﹣67只
    x+3x﹣100+3x﹣100﹣67=1000
    7x=1000+100+100+67
    7x=1267
    x=1267÷7
    x=181
    3x﹣100=3×181﹣100=443(只)
    答:A叠了443只千纸鹤.
    【点评】关键是找准数量间的相等关系,设一个未知数为x,其它的未知数用含x的式子来表示,进而列并解方程即可.
    15.(15分)109T 次列车19:33从北京出发,次日10:26到达上海;1461次列车11:58从北京出发,次日8:01到达上海.问:这两次列的运行的时间相差多少分钟?
    【分析】分别求出这两次列车运行的时间,然后求差值,即可得解.
    【解答】解:109T运行:24时﹣19时33分+10时26分=14时53分,
    1461次运行:24时﹣11时58分+8时1分=20时3分,
    20时3分﹣14时53分=5时10分,
    答:这两次列的运行的时间相差5小时10分钟.
    【点评】解决本题要根据时间特点选择适合的方法计算.
    16.(15分)李叔叔承包了12亩水稻田,亩产量是660千克.林阿姨比李叔叔少承包2亩水稻田,水稻的总产量比李叔叔的少420千克.问:
    (1)李叔叔的水稻总产量是多少千克?
    (2)李叔叔的水稻亩产量比林阿姨的少多少千克?
    【分析】(1)亩产量×亩数=总产量,据此代入数据即可求解;
    (2)先分别计算出林阿姨水稻的总产量和总亩数,再据除法的意义即可得解.
    【解答】解:(1)660×12=7920(千克);
    答:李叔叔的水稻总产量是7920千克.
    (2)(7920﹣420)÷10
    =7500÷10
    =750(千克)
    750﹣660=90(千克);
    答:李叔叔的水稻亩产量比林阿姨的少90千克.
    【点评】此题主要考查亩产量,亩数,和总产量之间的关系.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
    日期:2019/4/22 16:48:38;用户:小学奥数;邮箱:pfpxxx02@xyh.cm;学号:20913800

    相关试卷

    第十一届希望杯全国数学邀请赛四年级试卷附答案1:

    这是一份第十一届希望杯全国数学邀请赛四年级试卷附答案1,共14页。试卷主要包含了以下每题6分,共120分,附加题等内容,欢迎下载使用。

    第十五届希望杯全国数学邀请赛四年级试卷附答案2:

    这是一份第十五届希望杯全国数学邀请赛四年级试卷附答案2,共11页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    第十三届希望杯全国数学邀请赛四年级试卷附答案2:

    这是一份第十三届希望杯全国数学邀请赛四年级试卷附答案2,共10页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    数学口算宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map