所属成套资源:2024年高考数学第一轮复习资料【专题特训】
第一轮复习新高考数学培优专练24 利用导数解决双变量问题+解析
展开
这是一份第一轮复习新高考数学培优专练24 利用导数解决双变量问题+解析,文件包含专题24利用导数解决双变量问题教师版docx、专题24利用导数解决双变量问题原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
专题24 利用导数解决双变量问题
一、单选题
1.设函数,函数,若对于,,使成立,则实数的取值范围是( )
A. B. C. D.
【答案】A
【分析】
由题意只需,对函数求导,判断单调性求出最小值,对函数讨论对称轴和区间的关系,得到函数最小值,利用即可得到实数的取值范围.
【详解】
若对于,,使成立,只需,
因为,所以,当时,,所以在上是减函数,所以函数取得最小值.
因为,
当时,在上单调递增,函数取得最小值,需,不成立;
当时,在上单调递减,函数取得最小值,需,解得,此时;
当时,在上单调递减,在上单调递增,函数取得最小值,需,解得或,此时无解;
综上,实数的取值范围是,
故选:A.
【点睛】
本题考查利用导数研究函数的最值,考查二次函数在区间的最值的求法,考查分类讨论思想和转化思想,属于中档题.
2.已知函数,且有两个极值点,其中,则的最小值为( )
A. B. C. D.
【答案】A
【分析】
的两个极值点是的两个根,根据韦达定理,确定的关系,用表示出,用表示出,求该函数的最小值即可.
【详解】
解:的定义域,
,令,则必有两根,
,所以,
,
,
,
当时,,递减,
所以
的最小值为
故选:A.
【点睛】
求二元函数的最小值通过二元之间的关系,转化为求一元函数的最小值,同时考查运算求解能力和转化化归的思想方法,中档题.
3.已知函数,若,其中,则的最大值为( )
A. B. C. D.
【答案】A
【分析】
由题意转化条件,通过导数判断函数的单调性,以及画出函数的图象,数形结合可知,进而可得,最后通过设函数,利用导数求函数的最大值.
【详解】
由题意,, ,则,
,
当时,,单调递减,
当时,,单调递增,
又时,,时,,
作函数的图象如下:
由图可知,当时,有唯一解,故,且,
∴,
设,,则,令,解得,
易得当时,,函数单调递增,
当时,,函数单调递减,
故,即的最大值为.
故选:A.
【点睛】
本题考查利用导数求函数的最值,重点考查转化与化归的思想,变形计算能力,数形结合思想,属于中档题,本题可得关键是判断.
4.设函数,函数,若对于,,使成立,则实数的取值范围是( )
A. B. C. D.
【答案】A
【分析】
根据对于,,使成立,用导数法求得的最小值,用二次函数的性质求得的最小值,再解不等式即可.
【详解】
因为,
所以,
,
,
,
当时,,所以在上是增函数,
所以函数取得最小值.
因为,
当时,取得最小值,
因为对于,,使成立,
所以,不成立;
当时,取得最小值,
因为对于,,使成立,
所以,解得,此时;
当时,取得最小值,
因为对于,,使成立,
所以,解得,此时;
综上:实数的取值范围是.
故选:A
【点睛】
本题主要考查双变量问题以及导数与函数的最值,二次函数的性质,还考查了分类讨论的思想和运算求解的能力,属于中档题.
5.已知函数,,实数,满足.若,,使得成立,则的最大值为( )
A.3 B.4 C.5 D.
【答案】A
【分析】
首先化简函数,和,,并判断函数的单调性,由条件转化为子集关系,从而确定值.
【详解】
,
,,
当时,解得:,当时,解得:,
所以在的单调递增区间是,单调递减区间是,当时取得最小值,
,函数在单调递增,
,,所以,,
令,解得:或,
由条件可知的值域是值域的子集,
所以的最大值是,的最小值是,
故的最大值是.
故选:A
【点睛】
本题考查函数的性质的综合应用,以及双变量问题转化为子集问题求参数的取值范围,重点考查转化与化归的思想,计算能力,属于中档题型.
二、解答题
6.已知函数.
(Ⅰ)求函数的图象在点处的切线方程;
(Ⅱ)若存在两个不相等的数,,满足,求证:.
【答案】(Ⅰ);(Ⅱ)证明见解析.
【分析】
(Ⅰ)首先求函数的导数,利用导数的几何意义,求函数的图象在点处的切线方程;(Ⅱ)首先确定函数零点的区间,构造函数,利用导数判断函数的单调性,并得到在上恒成立,并利用单调性,变形得到.
【详解】
(Ⅰ),
所以的图象在点处的切线方程为.
(Ⅱ)令,解得,
当时,在.上单调递增;当时, , 在上单调递减.
所以为的极大值点,不妨设,由题可知.
令,
,因为,所以,
所以单调递减.
又,所以在上恒成立,
即在上恒成立.
所以,
因为,,
又在上单调递增,所以,
所以.
【点睛】
思路点睛:本题是典型的极值点偏移问题,需先分析出原函数的极值点,找到两个根的大致取值范围,再将其中一个根进行对称的转化变形,使得与在同一个单调区间内,进而利用函数的单调性分析.
7.已知函数,为的导函数.
(1)当时,
(i)求曲线在点处的切线方程;
(ii)求函数的单调区间和极值;
(2)当时,求证:对任意的且,有.
【答案】(1)(i);(ii)递减区间为,递增区间为;极小值为,无极大值;(2)证明见解析.
【分析】
(1)(i)确定函数,求出,然后利用导数的几何意义求出切线方程即可;
(ii)确定函数,求出,利用导数研究函数的单调性与极值即可;
(2)求出,对要证得不等式进行等价转换后,构造新函数,利用导数研究新函数的单调性,结合等价转换后的结果即可证明结论成立.
【详解】
(1)(i)当时,,故.
可得,,
所以曲线在点处的切线方程为,即.
(ii)依题意,,,从而求导可得,整理可得.
令,解得.
当变化时,,的变化情况如下表:
1
0
极小值
所以,函数的单调递减区间为,单调递增区间为;的极小值为,无极大值.
(2)证明:由,得.
对任意的,且,令,则
. ①
令,.
当时,,由此可得在单调递增,
所以当时,,即,
因为,,,
所以
. ②
由(1)(ii)可知,当时,,即,
故. ③
由①②③可得.
所以,当时,对任意的,且,有.
【点睛】
结论点睛:本题考查不等式的恒成立问题,可按如下规则转化:
一般地,已知函数,
(1)若,,总有成立,故;
(2)若,,有成立,故;
(3)若,,有成立,故;
(4)若,,有,则的值域是值域的子集.
8.已知函数.其中为常数.
(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;
(2)已知,是函数的两个不同的零点,求证:.
【答案】(1);(2)证明见解析.
【分析】
(1)求出导函数,分类讨论确定的正负,得的单调性,从而得极值点个数,由此可得结论;
(2)结合(1)求得函数有两个零点时的范围,设,则,,
引入函数,由导数确定它是减函数,得,然后利用,再结合的单调性得出证明.
【详解】
(1),
当时,,在上单调递增,不符合题意,
当时,令,得,
当时,,单调递减,当时,,单调递增,
所以此时只有一个极值点.
(2)由(1)知
当时,,在上单调递增,函数至多有一个零点,不符合题意,
当时,令,得,
当时,,单调递减,
当时,,单调递增,
故当时,函数取得最小值,
当时,,,函数无零点,不合题意,
当时,,,函数仅有一个零点,不合题意,
当时,,,
又,所以在上只有一个零点,
令,则,
故当时,,单调递增,
当时,,单调递减,
所以,即,所以,
所以,
又,所以在上只有一个零点.
所以满足题意.
不妨设,则,,
令,
则,
,
当时,,所以在上单调递减,
所以当时,,即,
因为,所以,
所以,
又,,且在上单调递增,
所以,故得证.
【点睛】
关键点点睛:本题考查用导数研究函数的极值点、零点,证明不等式.难点是不等式的证明,首先由零点个数得出参数范围,在不妨设,则,后关键是引入函数,同样用导数得出它的单调性,目的是证得,然后利用这个不等关系变形的单调性得结论.
9.已知函数,,设.
(1)若,求的最大值;
(2)若有两个不同的零点,,求证:.
【答案】(1)最大值为;(2)证明见解析.
【分析】
(1)首先求出函数的导函数,再判断的符号,即可得到函数的单调区间,从而求出函数的最大值;
(2)由题知,,即,,要证,即可,令,则只需证.构造函数,利用导数说明其单调性即可得证;
【详解】
解:
(1)解:当时,
所以.
注意,且当时,,单调递增;
当时,,单调递增减.
所以的最大值为.
(2)证明:由题知,,
即,,
可得.
.
不妨,则上式进一步等价于.
令,则只需证.
设,,
所以在上单调递增,
从而,即,
故原不等式得证.
【点睛】
本题考查导数在最大值、最小值问题中的应用,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,属于难题.
10.已知函数,其中.
(1)若在上存在极值点,求a的取值范围;
(2)设,,若存在最大值,记为,则当时,是否存在最大值?若存在,求出其最大值;若不存在,请说明理由
【答案】(1),;(2)(a)存在最大值,且最大值为.
【分析】
(1)求出函数的导数,将题意转换为在上有解,由在上递增,得,,求出的范围即可;
(2)求出函数的导数,得到,求出(a),根据函数的单调性求出(a)的最大值即可.
【详解】
解:(1),,
由题意得,在上有根(不为重根),
即在上有解,
由在上递增,得,,
检验,时,在上存在极值点,
,;
(2)中,
若,即在上满足,
在上递减, ,
不存在最大值,则;
方程有2个不相等的正实数根,
令其为,,且不妨设,
则,
在递减,在递增,在递减,
对任意,有,
对任意,有,
,
(a),
将,代入上式,消去,得:
(a),
,,,
由在递增,得,,
设,,,
,,,
,即在,递增,
(e),
(a)存在最大值为.
【点睛】
本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道综合题.
11.已知函数,,其中.
(1)若函数的图象与直线在第一象限有交点,求的取值范围.
(2)当时,若有两个零点,,求证:.
【答案】(1);(2)证明见解析.
【分析】
(1)根据题意设,问题转化为方程,在有解,求导,分类讨论①若,②若,③若时,分析单调性,进而得出结论.
(2)运用分析法和构造函数法,结合函数的单调性,不等式的性质,即可得证.
【详解】
解:(1)设,
则由题设知,方程,在有解,
而.
设,则.
①若,由可知,且,
从而,即在上单调递减,从而恒成立,
因而方程在上无解.
②若,则,又时,,
因此,在上必存在实根,设最小的正实根为,
由函数的连续性可知,上恒有,
即在上单调递减,
也即,在上单调递减,从而在上恒有,
因而在上单调递减,故在上恒有,即,
注意到,因此,
令时,则有,由零点的存在性定理可知函数在,上有零点,符合题意.
③若时,则由可知,恒成立,从而在上单调递增,
也即在上单调递增,从而恒成立,故方程在上无解.
综上可知,的取值范围是.
(2)因为有两个零点,所以(2),
即,
设,则要证,
因为,,
又因为在上单调递增,
所以只要证明,
设,
则,
所以在上单调递减,(2),所以,
因为有两个零点,,,所以,
方程即构造函数,
则,,,
记,
则在上单调递增,在上单调递减,
所以,且,
设,
,
所以递增,
当时,,
当时,,
所以,
即,
,,,
所以,
同理,
所以,
所以,
所以,
由得:
,
综上:.
【点睛】
本题考查导数的综合应用,不等式的证明,关键是运用分类讨论,构造函数的思想去解决问题,属于难题.
12.已知函数.
(1)若在单调递增,求a的值;
(2)当时,设函数的最小值为,求函数的值域.
【答案】(1)1;(2).
【分析】
(1)由在单调递增,利用导数知在上恒成立即可求参数a的值;(2)由有,利用二阶导数可知在上单调递增,进而可知,使得,则有的单调性得最小值,结合并构造函数可求取值范围,进而利用导数研究的单调性即可求范围;
【详解】
(1),又在单调递增,
∴,即在上恒成立,
(i)当时,,则需,故,即;
(ii)当时,,则;
(iii)当时,,则需,故,即;
综上所述:;
(2),,,
∵,有,
∴在上单调递增,又,,
∴,使得,当时,,函数单调递减,当时,,函数单调递增,
故的最小值为,
由得,因此,
令,,则,
∴在上单调递增,又,,,
∴取值范围为,
令(),则,
∴函数在上单调递增,又,,
∴,即函数的值域为.
【点睛】
本题考查了利用导数研究函数的单调性求参数,由原函数得到最值,构造中间函数并根据其导数讨论单调性,求最值的取值范围;中间函数需要根据步骤中的研究对象及目的确定;
13.已知函数.
(1)讨论函数的单调性;
(2)若存在两个极值点,求证:.
【答案】(1)答案不唯一,具体见解析;(2)证明见解析.
【分析】
(1)求出导函数,根据二次函数的与的关系来分类讨论函数的单调性,并注意一元二次方程根的正负与定义域的关系;
(2)由是两个极值点得到对应的韦达定理形式,然后利用条件将转变为关于函数,再运用的关系将不等式转化为证,构造函数,分析函数的单调性,得出最值,不等式可得证.
【详解】
(1)解:函数的定义域为,,则.
①当时,对,所以函数在上单调递增;
②当时,,所以对,所以函数在上单调递增;
③当时,令,得或,所以函数在,上单调递增;
令,得,所以在上单调递减.
(2)证明:由(1)知且,所以.
又由
.
又因为.
所以要证,只需证.
因为,所以只需证,即证.
令,则,所以函数在上单调递增,
所以对.所以.
所以若存在两个极值点,则.
【点睛】
本题考查函数与导数的综合应用,属于较难题.导数中通过双极值点求解最值或证明不等式时,可通过双极值点对应的等式将待求的式子或待证明的式子转变为关于同一变量(注意变量的范围)的式子,然后通过构造新函数,分析新函数的单调性后从而达到求解最值或证明不等式的目的.
14.已知函数.
(1)当时,求函数的单调区间;
(2)当时,函数有三个不同的零点,,,求证:.
【答案】(1)增区间为,;减区间为;(2)证明见解析.
【分析】
(1)求出原函数的导函数,得到函数零点,由导函数零点对定义域分段,再由导函数在不同区间段内的符号得到原函数的单调区间;
(2)由,可得是函数的一个零点,不妨设,把问题转化为证,即证.由,得,结合,是方程的两个实根,得到,代入,只需证,不妨设.转化为证.
设,则等价于.设,利用导数证明即可.
【详解】
(1)解:,
令,得,.
当或时,;当时,.
增区间为,;减区间为;
(2)证明:,是函数的一个零点,不妨设,
则要证,只需证.
由,得,
,是方程的两个实根,
,①
,②,
①②得:,
代入,只需证,不妨设.
,只需证.
,只需证.
设,则等价于.
设,只需证,
又,设,
则,在上单调递增,则.
,从而在上是增函数,
.
综上所述,.
【点睛】
本题考查利用导数研究函数的单调性,考查利用导数求函数的极值,考查数学转化思想方法,属难题.
15.已知函数,其中为自然对数的底数.
(1)证明:在上单调递减,上单调递增;
(2)设,函数,如果总存在,对任意,都成立,求实数的取值范围.
【答案】(1)证明见解析;(2).
【分析】
(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;
(2)总存在,,对任意都有,即函数在,上的最大值不小于,的最大值;借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可
【详解】
(1)证明:
令,解得,∴在上单调递增
令,解得,∴在上单调递减
(2)总存在,,对任意都有,
即函数在,上的最大值不小于,的最大值
令,∴,对称轴
∴
∴,,
令,∴,∴
∴,∴
【点睛】
本题考查利用导数研究函数的单调性,考查三角函数的有界性,二次函数的最值以及恒成立问题的转化,考查转化思想以及计算能力,属于中档题.
16.已知函数,.其中,为常数.
(1)若函数在定义域内有且只有一个极值点,求实数的取值范围;
(2)已知,是函数的两个不同的零点,求证:.
【答案】(1);(2)证明见解析.
【分析】
(1)首先求函数的导数,根据题意转化为在内有且仅有一个变号零点,根据二次函数的单调性,列式求解的取值范围;(2)求出当函数有两个零点时,求出,再构造函数,利用导数判断函数的单调性,得到,再通过构造得到,利用函数的单调性证明结论.
【详解】
(1),因为函数在定义域有且仅有一个极值点,
所以在内有且仅有一个变号零点,
由二次函数的图象和性质知,解得,
即实数的取值范围为.
(2),
当时,,在上单调递增,函数至多有一个零点,不符合题意,
当时,令,得,
当时,,单调递减,
当时,,单调递增,
故当时,函数取得最小值,
当时,,,函数无零点,不合题意,
当时,,,函数仅有一个零点,不合题意,
当时,,,
又,所以在上只有一个零点,
令,则,
故当时,,单调递增,
当时,,单调递减,
所以,即,所以,
所以,
又,所以在上只有一个零点.
所以满足题意.
不妨设,则,,
令,
则,
,
当时,,所以在上单调递减,
所以当时,,即,
因为,所以,
所以,
又,,且在上单调递增,
所以,故得证.
【点睛】
本题考查利用导数证明函数的单调性,极值,最值,零点,函数与方程,不等式的综合应用,重点考查逻辑推理,转化与变形,计算能力,属于难题.
17.已知函数,既存在极大值,又存在极小值.
(1)求实数的取值范围;
(2)当时,,分别为的极大值点和极小值点.且,求实数的取值范围.
【答案】(1);(2).
【分析】
(1)求出函数的导数,结合函数的单调性确定的范围即可;
(2)求出函数的极值点,问题转化为,设,根据函数的单调性确定的范围即可.
【详解】
解:(1)由得,
即,
由题意,若存在极大值和极小值,则必有两个不相等的实数根,
由得,所以必有一个非零实数根,
∴,,∴且,∴或.
综上,实数的取值范围为.
(2)当时,由(1)可知的极大值点为,极小值点为,
此时,,
依题意得对任意恒成立,
由于此时,所以;
所以,即,
设,,则
,
令,判别式.
①当时,,所以,在单调递增,
所以,即,符合题意;
②当时,,设的两根为,,且,
则,,因此,
则当时,,在单调递减,
所以当时,,即,
所以,矛盾,不合题意;
综上,的取值范围是.
【点睛】
本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法,考查了推理能力与计算能力,属于难题.
18.已知函数有两个零点,.
(1)求实数的取值范围;
(2)求证:.
【答案】(1);(2)证明见解析.
【分析】
(1)写出函数定义域并求导,从而得到函数的单调性,根据单调性得到函数的最大值,要使有两个零点,只需最大值即可.
(2)函数有两个零点,,可得,两式相减得,
欲证,即证,设,构造函数,通过函数的单调性即可得到证明.
【详解】
(1)函数定义域为,.
令得,可得在上单调递增,在上单调递减,
又时,,时,,
故欲使有两个零点,只需,即.
(2)证明:不妨设,则由(1)可知,
且,两式相减可得.
欲证,即证,
设,则即证,
构造函数,
则,
所以在上单调递增,故,
所以,原不等式得证.
【点睛】
本题考查利用导数研究函数的零点,单调性以及最值问题,考查利用变量集中的思想解决不等式的证明,考查构造函数的思想,属于中档题.
19.已知函数,.
(1)若函数在上单调递增,求实数的取值范围;
(2)当时,若与的图象有两个交点,,试比较与的大小.(取为2.8,取为0.7,取为1.4)
【答案】(1);(2).
【分析】
(1)根据条件得到对恒成立,由此得到关于的不等式,采用分离常数的方法求解出的取值范围;
(2) 根据交点坐标列出对应的方程组,用关于的式子表示出,由此得到关于的等式,通过设变量得到关于的函数,利用导数分析出关于的函数的最值,再借助基本不等式以及构造函数并利用的单调性分析出与的关系.
【详解】
(1),则,
∵在上单调递增,∴对,都有,
即对,都有,∵,∴,
故实数的取值范围是.
(2)由题意知,,
两式相加得,两式相减得,
即,∴,
即,
不妨令,记,令,则,
∴在上单调递增,则,
∴,则,∴,
又,
∴,即,
令,则时,,∴在上单调递增,
又,
∴,则,即.
【点睛】
本题考查导数的综合应用,其中涉及到根据单调性求解参数范围以及双变量转化为单变量等问题,对学生的分析、计算与转化能力要求很高,难度偏难.
20.已知函数.
(Ⅰ)当时,求证:.
(Ⅱ)设,若,,使得成立,求实数a的取值范围.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【分析】
(1)将代入,只需证明成立即可,然后构造函数,利用导数讨论单调区间及最小值,利用最值证明即可;
(2)若,,使得成立,只需使在,上恒成立,然后分别讨论函数与的最小值,利用最值分析求解.
【详解】
解:(Ⅰ)当时,要证,只需证,
令,则
当时,单调递增;
当时,单调递减;
所以,
故,所以.
(Ⅱ)问题等价于,,
由得,
由得,
所以在上,是增函数,故.定义域为,
而.
当时,恒成立,在上是减函数,
所以,不成立;
当时,由,得;由,得,
所以在单调递减,在单调递减.
若,即时,在是减函数,
所以,不成立;
若,即时,在处取得最小值,,
令,
则在上恒成立,
所以在是增函数且,
此时成立,满足条件.
综上所述,.
【点睛】
本题考查导数与不等式的证明,考查导数与双变量问题,难度较大,考查学生分析问题处理问题的能力.导数与不等式的证明,一般需要构造函数,通过证明函数的最值满足条件从而得出结论,双变量问题多用函数的最值来比较.
21.设函数.
(1)当时,试讨论函数的单调性;
(2)设,记,当时,若函数与函数有两个不同交点,,,,设线段的中点为,试问是否为的根?说明理由.
【答案】(1)分类讨论,答案见解析;(2)不是的根,理由见解析.
【分析】
(1)把代入后对函数求导,然后结合导数与单调性关系即可求解;
(2)先对求导,然后结合导数与单调性关系可求的单调性,欲证,只需证明,结合函数零点性质,进行合理转化,构造函数,结合导数与函数性质即可证明.
【详解】
解:(1)由可知,,
所以当时,因为函数的定义域为,所以,当时,,函数单调递减,
当时,,函数单调递增;
(2)证明:由题可知,,
,
当时,,当时,,且,
欲证,只需证明,
设,是方程的两个不相等的实根,不妨设,
则,两式相减并整理得,
从而,故只需证明,即,
式可转化为,即,
因为,所以,不妨令,即证成立,
记,则,当且仅当时等号成立,
在上单调递增,又(1),,,故,
即不成立,故不是的根.
当时,,当时,,且,
欲证,只需证明,
设,是方程的两个不相等的实根,不妨设,
则,两式相减并整理得,
从而,故只需证明,即,
式可转化为,即,
因为,所以,不妨令,即证成立,
记,则,当且仅当时等号成立,
在上单调递增,又(1),,,故,
即不成立,故不是的根.
【点睛】
本题综合考查了导数与单调性关系的应用及利用导数及函数的性质求解函数零点问题,体现了转化思想的应用,属于难题.
22.已知函数.
(1)若函数在区间内是单调递增函数,求实数a的取值范围;
(2)若函数有两个极值点,,且,求证:.(注:为自然对数的底数)
【答案】(1);(2)证明见解析
【分析】
(1)函数在区间上是单调递增函数,,化为:,.利用二次函数的单调性即可得出.
(2)在区间上有两个不相等的实数根,⇔方程在区间上有两个不相等的实数根.令,利用根的分布可得的范围,再利用根与系数关系可得:,得,令.利用导数研究其单调性极值与最值即可得出.
【详解】
(1)解:∵函数在区间上是单调递增函数,
∴,化为:,,
令,则时取等号.
.
∴实数的取值范围是;
(2)证明:在区间上有两个不相等的实数根,
即方程在区间上有两个不相等的实数根,
记,则,解得,
,
,
令,
,
记,
,
令在上单调递增.
,
因此函数存在唯一零点,使得,
当 ;当时,,
而在单调递减,在单调递增,
而,
,
,
∴函数在上单调递减,
,
可得:,
即.
【点睛】
本题考查了利用导数研究单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.
23.已知函数
(1)当时,求函数的单调区间;
(2)若,函数的最小值为,求的值域.
【答案】(1)单调增区间为;无单调减区间;(2).
【分析】
(1)由题意对函数求导得,令,通过导数可证明,进而可得,即可得解;
(2)由题意结合导数可得且,令,由导数结合可得,进而可得,令,,结合导数求得的值域即可得解.
【详解】
(1)当时,函数,定义域为,
则,
令,则恒成立;
∴在上单调递增,,
∴恒成立,
故的单调增区间为;无单调减区间.
(2)∵,
令,显然在单调递增,
又,,
∴据零点存在定理,存在,使即,
∴当时,即,在上单调递减;
当时,即,在上单调递增;
∴①,
又,∴;
令,则,
∴当时,,在上单调递减;
又,∴即,
将代入①得
,
令,,
∴,
∴在上单调递减,
又,,
∴,故的值域为.
【点睛】
本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,细心计算、合理转化是解题关键,属于难题.
24.已知函数.
(1)若在定义域单调递增,求a的取值范围;
(2)设,m,n分别是的极大值和极小值,且,求S的取值范围.
【答案】(1);(2).
【分析】
(1)由条件可知恒成立,所以对求导,分离参数可得:在上恒成立,利用对勾函数求在上的最小值,可得到的范围. (2)利用在有极大值和极小值和已知条件,可求出的范围以及根与系数的关系,用变量集中的方法表示出的函数,设变量为,再根据两根的范围解出的范围,利用单调性即可求出的范围.
【详解】
解:(1)由已知,
在定义域上单调递增,则,即在上恒成立,
而,所以;
(2)由(1)知,欲使在有极大值和极小值,必须.
又,所以.
令的两根分别为,,
即的两根分别为,,于是.
不妨设,
则在上单调递增,在上单调递减,在上单调递增,
所以,,
所以
令,于是.
,
即:,解得.
因为,所以在上为减函数.所以.
【点睛】
本题考查已知单调性求参,考查利用导数求函数值的范围,考查变量集中方法的应用以及学生的转化能力和计算能力,属于难题.
25.已知函数.
(1)求函数的单调递增区间;
(2)任取,函数对任意,恒有成立,求实数的取值范围.
【答案】(1)答案见解析;(2).
【分析】
(1)求函数导数,分类讨论求的解即可求解;
(2)由(1)知在[1.3]上单调递减,不妨设,从而把不等式中的绝对值去掉得:
,构造函数,把问题转化为恒成立问题,求得实数的取值范围.
【详解】
(1)
当 时,,
所以在 上单调递增;
当 时,由解得或,
所以在,上单调递增;
当时,由解得或,
所以在, 上单调递增;
当时,由解得,
所以在上单调递增.
综上所述:
当 时,单调递增区间为和;
当 时,单调递增区间为;
当 时,单调递增区间为和;
当 时,单调递增区间为
(2)因为,由(1)得,在上单调递减,
不妨设 , 由得,
即
令 ,,
只需恒成立,
即(,)恒成立,
,
即()恒成立,
即()恒成立,
因为(当且仅当时取等号),
所以实数的取值范围是.
【点睛】
本题主要考查利用导数研究函数的单调性、全称量词和存在量词的综合、不等式恒成立问题等,对分类讨论思想的要求较高,在第(2)问的求解时,去掉绝对值后,构造新函数,再利用导数研究新函数是解决问题的关键.
相关试卷
这是一份2023年高考数学大题专练专题12利用导数解决双变量问题试题含解析,共48页。试卷主要包含了设函数,已知函数存在两个极值点,已知.,,其中,已知函数,其中,为的导函数.,已知函数的最小值为1,已知,函数.等内容,欢迎下载使用。
这是一份2023年高考数学复习大题全题型专练 专题12 利用导数解决双变量问题,文件包含专题12利用导数解决双变量问题解析版docx、专题12利用导数解决双变量问题原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份2023年高考数学大题专练(新高考专用) 专题12 利用导数解决双变量问题 Word版含解析,文件包含2023年高考数学大题专练新高考专用专题12利用导数解决双变量问题Word版含解析docx、2023年高考数学大题专练新高考专用专题12利用导数解决双变量问题Word版无答案docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。