2024年数学高考大一轮复习第八章 培优课 §8.2 球的切、接问题(附答单独案解析)
展开§8.2 球的切、接问题
球的切、接问题,是历年高考的热点内容,经常以客观题出现.一般围绕球与其他几何体的内切、外接命题,考查球的体积与表面积,其关键点是确定球心.
题型一 定义法
例1 (1)(2023·宣城模拟)在三棱锥P-ABC中,PA⊥平面ABC,PA=2,AB=2,AC=4,∠BAC=45°,则三棱锥P-ABC外接球的表面积是( )
A.14π B.16π C.18π D.20π
(2)(2022·新高考全国Ⅱ)已知正三棱台的高为1,上、下底面边长分别为3和4,其顶点都在同一球面上,则该球的表面积为( )
A.100π B.128π
C.144π D.192π
听课记录:_____________________________________________________________________
_______________________________________________________________________________
思维升华 到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据到其他顶点距离也是半径,列关系式求解即可.
跟踪训练1 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的半径为( )
A. B.2
C. D.3
题型二 补形法
例2 (1)(2023·大庆模拟)在正方形ABCD中,E,F分别为线段AB,BC的中点,连接DE,DF,EF,将△ADE,△CDF,△BEF分别沿DE,DF,EF折起,使A,B,C三点重合,得到三棱锥O-DEF,则该三棱锥的外接球半径R与内切球半径r的比值为( )
A. 2 B.4 C.2 D.
听课记录:_____________________________________________________________________
_______________________________________________________________________________
(2)如图,在多面体中,四边形ABCD为矩形,CE⊥平面ABCD,AB=2,BC=CE=1,通过添加一个三棱锥可以将该多面体补成一个直三棱柱,那么添加的三棱锥的体积为________,补形后的直三棱柱的外接球的表面积为________.
听课记录:_____________________________________________________________________
_______________________________________________________________________________
思维升华 (1)补形法的解题策略
①侧面为直角三角形,或对棱均相等的模型和正四面体,可以还原到正方体或长方体中去求解;
②直三棱锥补成三棱柱求解.
(2)正方体与球的切、接问题的常用结论
正方体的棱长为a,球的半径为R,
①若球为正方体的外接球,则2R=a;
②若球为正方体的内切球,则2R=a;
③若球与正方体的各棱相切,则2R=a.
(3)若长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=.
跟踪训练2 (1)在三棱锥A-BCD中,侧棱AB,AC,AD两两垂直,△ABC,△ACD,△ADB的面积分别为,,,则三棱锥A-BCD的外接球的体积为( )
A.π B.2π
C.3π D.4π
(2)棱长为a的正四面体的体积与其内切球体积之比为________.
题型三 截面法
例3 (1)四棱锥P-ABCD的顶点都在球O的表面上,△PAD是等边三角形,底面ABCD是矩形,平面PAD⊥平面ABCD,若AB=2,BC=3,则球O的表面积为( )
A.12π B.16π C.20π D.32π
听课记录:_____________________________________________________________________
_______________________________________________________________________________
(2)如图所示,直三棱柱ABC-A1B1C1是一块石材,测量得∠ABC=90°,AB=6,BC=8,AA1=13.若将该石材切削、打磨,加工成几个大小相同的健身手球,则一个加工所得的健身手球的最大体积及此时加工成的健身手球的个数分别为( )
A.,4 B.,3
C.6π,4 D.,3
听课记录:___________________________________________________________________
_____________________________________________________________________________
思维升华 (1)与球截面有关的解题策略
①定球心:如果是内切球,球心到切点的距离相等且为半径;如果是外接球,球心到接点的距离相等且为半径;
②作截面:选准最佳角度作出截面,达到空间问题平面化的目的.
(2)正四面体的外接球的半径R=a,内切球的半径r=a,其半径之比R∶r=3∶1(a为该正四面体的棱长).
跟踪训练3 (1)(2022·淮北模拟)半球内放三个半径为的小球,三小球两两相切,并且与球面及半球底面的大圆面也相切,则该半球的半径是( )
A.1+ B.+
C.+ D.+
(2)(2021·天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1∶3,则这两个圆锥的体积之和为( )
A.3π B.4π C.9π D.12π
2024年数学高考大一轮复习第八章 §8.2 球的切、接问题[培优课]: 这是一份2024年数学高考大一轮复习第八章 §8.2 球的切、接问题[培优课],共2页。
2024年数学高考大一轮复习第八章 培优课 §8.2 球的切、接问题: 这是一份2024年数学高考大一轮复习第八章 培优课 §8.2 球的切、接问题,共3页。
2024年数学高考大一轮复习第八章 培优课 §8.2 球的切、接问题(附答单独案解析): 这是一份2024年数学高考大一轮复习第八章 培优课 §8.2 球的切、接问题(附答单独案解析),共2页。