终身会员
搜索
    上传资料 赚现金

    四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析)

    立即下载
    加入资料篮
    四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析)第1页
    四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析)第2页
    四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析)第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析)

    展开

    这是一份四川省江油中学2023-2024学年高三理科数学上学期10月月考试题(Word版附解析),共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。


    江油中学高2021级高三上期10月月考

    数学试题(理科)

    一、选择题:本大题共12小题,每小题5分,共60.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 已知集合,则   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】解一元二次不等式可得集合B,然后由交集定义可得.

    【详解】集合

    解不等式可得集合

    所以.

    故选:B

    2. 已知实数满足),则下列关系式恒成立的是(  

    A.  B. lnln

    C.  D.

    【答案】D

    【解析】

    【分析】)得,根据基本初等函数单调性逐个判断即可,或举出反例排除.

    【详解】)得

    A,不恒成立,A错;

    Blnln,不恒成立,B错;

    C,三角函数有周期性,不恒成立,C错;

    DD.

    故选:D.

    3. 已知命题 中,若 ;命题向量与向量相等充要条件是.下列四个命题是真命题的是(   

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】根据条件分别判断命题和命题的真假,结合复合命题真假关系进行判断即可.

    【详解】命题:在中,若,由于余弦函数在上单调递减,则,故命题为真命题;

    命题:向量与向量相等的充要条件是向量与向量大小相等,方向相同,则命题是假命题.

    为真命题.

    故选:A

    4. 中,上一点,且,则   

    A.  B.

    C.  D.

    【答案】C

    【解析】

    【分析】利用平面向量的三角形法则和共线定理,即可得到结果.

    【详解】因为上一点,且

    故选:C

    【点睛】本题考查了平面向量的线性运算和共线定理的应用,属于基础题.

    5. 习近平总书记强调,发展航天事业,建设航天强国,是我们不懈追求的航天梦.我国在文昌航天发射场用长征五号遥五运载火箭把嫦娥五号探测器顺利地送入预定轨道,开启我国首次外太空采样返回之旅.这为我国未来月球与行星探测奠定了坚实基础.在不考虑空气阻力的条件下,火箭的最大速度 (单位:)和燃料的质量(单位:)、火箭(除燃料外)的质量(单位:)的函数关系式是.若火箭的最大速度为,则燃料质量与火箭质量(除燃料外)的比值约为:(参考数据:)(   

    A.  B.  C.  D.

    【答案】C

    【解析】

    【分析】利用指对数转化可求燃料质量与火箭质量(除燃料外)的比值.

    【详解】,则

    故选:C.

    6. 已知等差数列的前项和为,若,则   

    A. 3 B. 4 C. 5 D. 6

    【答案】A

    【解析】

    【分析】根据等差数列的性质可得,进而可求解.

    【详解】,所以

    故选:A

    7. 已知,则   

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】为整体,结合倍角公式可得,再利用诱导公式运算求解.

    【详解】因为

    所以

    故选:A.

    8. 函数的图象可能是(   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】从图像利用排除法进行求解:

    先分析奇偶性,排除B;计算排除C;根据时,;排除D.

    即可得到答案.

    【详解】对于,定义域为关于原点对称.

    因为

    所以是偶函数,排除B.

    时,,排除C

    时,;排除D.

    故选:A.

    9. 已知函数的部分图象如图所示,则   

    A.  B.  C.  D.

    【答案】B

    【解析】

    【分析】首先根据已知条件求出以及的值,进而确定的解析式,再结合三角函数的平移规律进行解答即可.

    【详解】根据题中图象可知,函数的最小正周期

    ,所以

    所以,所以.

    故选:B

    10. 已知,则   

    A. 2 B.  C.  D.

    【答案】A

    【解析】

    【分析】利用二倍角公式及同角三角函数的基本关系计算可得.

    【详解】解:因为

    所以,所以

    ,即.

    故选:A

    11. 若函数为偶函数,对任意的,且,都有,则(   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】由题意可得函数上递减,且关于对称,则,利用作差法比较三者之间的大小关系,再根据函数的单调性即可得解.

    【详解】解:由对,且,都有

    所以函数上递减,

    又函数偶函数,

    所以函数关于对称,

    所以

    因为

    所以

    因为

    所以

    所以

    所以

    .
    故选:A.

    12. 若正实数是函数的一个零点,是函数的一个大于的零点,则的值为(   

    A.  B.  C.  D.

    【答案】C

    【解析】

    【分析】依题意得,则,即是,从而同构函数,利用的单调性得到,代入求解即可.

    【详解】依题意得,

    ,即

    ,即

    同构函数:

    ,又

    单调递增,

    .

    故选:C.

    【点睛】关键点点睛:

    1)函数零点即为函数取值;

    2)对的两个方程合理的变形,达到形式同一,进而同构函数,其中应注意定义域;

    3)运用导数研究函数的单调性,进而确定

    4)求解的值时,将替换后应注意分子的取值.

    二、填空题:本大题共4小题,每小题5分,共20.

    13. 已知向量,且,则___________.

    【答案】

    【解析】

    【分析】利用向量共线的坐标运算即可求出结果.

    【详解】因为,所以,又

    所以,解得,所以,故.

    故答案为:.

    14. 曲线在点处的切线方程为__________

    【答案】

    【解析】

    【分析】先验证点在曲线上,再求导,代入切线方程公式即可.

    【详解】由题,当时,,故点在曲线上.

    求导得:,所以

    故切线方程为

    故答案为:

    15. 公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.,则______.

    【答案】

    【解析】

    【分析】根据,求得,代入即可求解.

    【详解】解:因为

    所以

    所以

    故答案为:.

    16. 已知函数,函数,则下列结论正确的是__________

    3个不同的零点,则a的取值范围是

    4个不同的零点,则a的取值范围是

    4个不同的零点,则

    4个不同的零点,则的取值范围是

    【答案】②③④

    【解析】

    【分析】根据题意,将问题转化为函数图像的交点个数问题,进而数形结合求解即可得答案.

    【详解】,得

    即所以零点个数为函数图像的交点个数,

    作出函数图像如图,

     

    由图可知,3个不同的零点,

    的取值范围是,故错误;

    4个不同的零点,则的取值范围是,故正确;

    4个不同的零点

    此时关于直线对称,所以,故正确;

    可知,所以

    由于4个不同的零点,的取值范围是

    所以,故选项正确.

    故答案为:②③④

    【点睛】关键点点睛:本题解题关键是将问题转化为函数图像的交点个数问题,数形结合得出答案,考查等价转化的思想.

    三、解答题:解答应写出文字说明,证明过程或演算步骤,第1721题为必考题,每个考生都必须作答,第2223 题为选考题,考生根据要求作答.

    (一)必考题:每题12分,共60.

    17. 已知数列满足,数列是等差数列,且

    1求数列的通项公式

    2,求数列的前项和

    【答案】1,   

    2

    【解析】

    【分析】1)根据可判断是等比数列,进而根据等差和等比数列基本量的计算即可求解通项公式,

    2)根据分组求和即可求解.

    【小问1详解】

    因为数列满足

    所以,数列是以为首项,公比为的等比数列,所以,

    即数列的通项公式为

    设等差数列的公差为,由

    ,解得,所以,

    即数列的通项公式为

    【小问2详解】

    有(1)可知

    所以,数列的前项和

    ,即

    18. ABC中,角ABC的对边分别是abc,且

    1求角B的大小;

    2DAC边上的一点,,且        ,求ABC的面积.

    请在下列两个条件中选择一个作为条件补充在横线上,并解决问题.

    BDABC的平分线;D为线段AC的中点.

    (注:如果选择多个条件分别解答,则按第一个解答记分.)

    【答案】1   

    2

    【解析】

    【分析】1)利用正弦定理边化角,结合两角和的正弦公式即可求解;

    2)选择,由平分,分别用三角形面积公式求解可得,利用余弦定理可得,联立即可求解的值,即可求得ABC的面积;选择,利用平面向量的线性运算可得,求解向量的模可得,利用余弦定理可得,联立即可求解的值,即可求得ABC的面积.

    【小问1详解】

    解:由正弦定理知,

    代入上式得

    .

    【小问2详解】

    若选

    平分得,

    中,由余弦定理得

    联立

    解得(舍去),

    若选

    因为

    ,得

    中,由余弦定理得

    联立,可得

    19. 函数.

    1求函数的单调减区间;

    2的图象先向左平移个单位,再将横坐标缩短为原来的(纵坐标不变),得到的图象.时,求的值域.

    【答案】1   

    2

    【解析】

    【分析】1)利用三角恒等变换得到,利用整体法求解的单调减区间;

    2)先根据平移和伸缩变换得到,根据得到,从而求出函数值域.

    【小问1详解】

    ,解得

    所以函数的单调减区间为.

    【小问2详解】

    的图象先向左平移个单位得到

    将横坐标缩短为原来的(纵坐标不变),得到

    时,

    所以,故

    所以的值域为.

    20. 已知函数,其中a是正数.

    1讨论的单调性;

    2若函数在闭区间上的最大值为,求a的取值范围.

    【答案】1答案见解析   

    2

    【解析】

    【分析】1)求导后,利用导数分类讨论确定单调性;

    2)由(1)的结论分类讨论确定最大值点,从而得参数范围.

    【小问1详解】

    因为

    所以

    时,上严格递增;

    时,由,由

    所以调递增,在上单调递减,在单调递增;

    时,由,由

    所以单调递增,在上单调递减,在单调递增;

    【小问2详解】

    由(1)可知时,

    上严格递增,此时上的最大值为

    时,单调递增,在上单调递减,在单调递增;

    上的最大值只有可能是

    因为上的最大值为

    所以

    解得,此时

    时,单调递增,在上单调递减,在单调递增;

    上的最大值可能是

    因为上的最大值为

    所以

    解得,此时

    ①②③得,

    满足条件的a的取值范围是

    21. 已知函数为自然对数的底数),.

    1单调递减,求实数的取值范围;

    2若不等式恒成立,求实数的取值范围.

    【答案】1   

    2

    【解析】

    【分析】1)由已知可将问题转化为上恒成立,进而参变分离转化求函数最值可得结果;

    2)由已知得到问题的等价不等式对一切恒成立,进而参变分离得到对一切恒成立,构造新函数,求最值即可.

    【小问1详解】

    解:单调递减,

    上恒成立,即上恒成立,

    ,需即可,

    ,则

    单调递增,

    【小问2详解】

    由题意,不等式恒成立,则对一切恒成立,

    ,所以

    原命题等价于对一切恒成立,

    对一切恒成立,

    ,则恒成立,

    上单增,

    使,即

    时,,即递减,

    时,,即递增,

    ,则

    函数单调递增,

    实数的取值范围为.

    【点睛】利用导数研究不等式恒成立问题,可对不等式进行转化,然后利用构造函数法,结合导数求得所构造函数的单调性、极值、最值等,从而求得参数的取值范围.

    (二)选考题:共10.考生在第2223两题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框.

    22. 在直角坐标系中,已知点的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

    1的普通方程和的直角坐标方程;

    2设曲线与曲线相交于两点,求的值.

    【答案】1   

    24

    【解析】

    【分析】1)利用消参法可求曲线的普通方程,利用可求的直角坐标方程;

    2)利用直线参数方程的几何意义可求的值.

    【小问1详解】

    的参数方程,消去参数可得

    由曲线的极坐标方程为,得

    所以直角坐方程为,即.

    【小问2详解】

    曲线的参数方程为参数),

    代入化简可得.

    对应的参数分别为,则

    所以.

    23. 已知函数.

    1求不等式的解集

    2在(1条件下,设中的最小的数为,正数满足,求的最小值.

    【答案】1   

    2

    【解析】

    【分析】1)将化为分段函数的形式,从而利用三段法解不等式,得到解集;

    2)由(1)知,化简得到,利用基本不等式“1”的妙用求出最小值.

    【小问1详解】

    不等式可化为,或,或

    ,解,解

    ,所以

    【小问2详解】

    由(1)可知,所以

    所以

    当且仅当,即时等号成立,

    所以的最小值为.

    相关试卷

    四川省成都石室中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析):

    这是一份四川省成都石室中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省绵阳市江油中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附答案):

    这是一份四川省绵阳市江油中学2023-2024学年高三数学(理)上学期10月月考试题(Word版附答案),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    四川省江油中学2023-2024学年高三上学期10月月考理科数学试题:

    这是一份四川省江油中学2023-2024学年高三上学期10月月考理科数学试题,文件包含10月月考答案理数docx、四川省江油中学2023-2024学年高三上期10月月考理数试题docx等2份试卷配套教学资源,其中试卷共8页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map