终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高考数学第一轮复习第二章 §2.1 函数的概念及其表示 试卷

    立即下载
    加入资料篮
    高考数学第一轮复习第二章 §2.1 函数的概念及其表示第1页
    高考数学第一轮复习第二章 §2.1 函数的概念及其表示第2页
    高考数学第一轮复习第二章 §2.1 函数的概念及其表示第3页
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学第一轮复习第二章 §2.1 函数的概念及其表示

    展开

    这是一份高考数学第一轮复习第二章 §2.1 函数的概念及其表示,共13页。试卷主要包含了1 函数的概念及其表示等内容,欢迎下载使用。
    考试要求 1.了解函数的含义,会求简单函数的定义域和值域.2.在实际情景中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并会简单的应用.
    知识梳理
    1.函数的概念
    一般地,设A,B是非空的实数集,如果对于集合A中的任意一个数x,按照某种确定的对应关系f,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.
    2.函数的三要素
    (1)函数的三要素:定义域、对应关系、值域.
    (2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数相等.
    3.函数的表示法
    表示函数的常用方法有解析法、图象法和列表法.
    4.分段函数
    若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.
    常用结论
    1.直线x=a与函数y=f(x)的图象至多有1个交点.
    2.在函数的定义中,非空数集A,B,A即为函数的定义域,值域为B的子集.
    3.分段函数虽由几个部分组成,但它表示的是一个函数.分段函数的定义域等于各段函数的定义域的并集,值域等于各段函数的值域的并集.
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)若两个函数的定义域和值域相同,则这两个函数是同一个函数.( × )
    (2)函数y=f(x)的图象可以是一条封闭曲线.( × )
    (3)y=x0与y=1是同一个函数.( × )
    (4)函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(x-1,x≥0,,x2,x1且x≠2,
    所以f(x)的定义域为(1,2)∪(2,+∞).
    (2)若函数f(x)的定义域为[0,2],则函数f(x-1)的定义域为________.
    答案 [1,3]
    解析 ∵f(x)的定义域为[0,2],
    ∴0≤x-1≤2,即1≤x≤3,
    ∴函数f(x-1)的定义域为[1,3].
    教师备选
    1.(2022·西北师大附中月考)函数y=lg(x2-4)+eq \r(x2+6x)的定义域是( )
    A.(-∞,-2)∪[0,+∞)
    B.(-∞,-6]∪(2,+∞)
    C.(-∞,-2]∪[0,+∞)
    D.(-∞,-6)∪[2,+∞)
    答案 B
    解析 由题意,得eq \b\lc\{\rc\ (\a\vs4\al\c1(x2-4>0,,x2+6x≥0,))
    解得x>2或x≤-6.
    因此函数的定义域为(-∞,-6]∪(2,+∞).
    2.已知函数f(x)=eq \f(x,\r(1-2x)),则函数eq \f(fx-1,x+1)的定义域为( )
    A.(-∞,1)
    B.(-∞,-1)
    C.(-∞,-1)∪(-1,0)
    D.(-∞,-1)∪(-1,1)
    答案 D
    解析 令1-2x>0,
    即2x1).
    (2)已知y=f(x)是二次函数,若方程f(x)=0有两个相等实根,且f′(x)=2x+2,则f(x)=________.
    答案 x2+2x+1
    解析 设f(x)=ax2+bx+c(a≠0),
    则f′(x)=2ax+b,
    ∴2ax+b=2x+2,
    则a=1,b=2.
    ∴f(x)=x2+2x+c,
    又f(x)=0,
    即x2+2x+c=0有两个相等实根.
    ∴Δ=4-4c=0,则c=1.
    故f(x)=x2+2x+1.
    教师备选
    已知f(x)满足f(x)-2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=2x,则f(x)=________.
    答案 -eq \f(2x,3)-eq \f(4,3x)
    解析 ∵f(x)-2f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))=2x,①
    以eq \f(1,x)代替①中的x,
    得f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,x)))-2f(x)=eq \f(2,x),②
    ①+②×2得-3f(x)=2x+eq \f(4,x),
    ∴f(x)=-eq \f(2x,3)-eq \f(4,3x).
    思维升华 函数解析式的求法
    (1)配凑法;(2)待定系数法;(3)换元法;(4)解方程组法.
    跟踪训练2 (1)已知f(1-sin x)=cs2x,则f(x)=________.
    答案 -x2+2x,x∈[0,2]
    解析 令t=1-sin x,
    ∴t∈[0,2],sin x=1-t,
    ∴f(t)=1-sin2x=1-(1-t)2
    =-t2+2t,t∈[0,2],
    ∴f(x)=-x2+2x,x∈[0,2].
    (2)(2022·黄冈质检)已知f eq \b\lc\(\rc\)(\a\vs4\al\c1(x2+\f(1,x2)))=x4+eq \f(1,x4),则f(x)=__________.
    答案 x2-2,x∈[2,+∞)
    解析 ∵f eq \b\lc\(\rc\)(\a\vs4\al\c1(x2+\f(1,x2)))=eq \b\lc\(\rc\)(\a\vs4\al\c1(x2+\f(1,x2)))2-2,
    ∴f(x)=x2-2,x∈[2,+∞).
    题型三 分段函数
    例3 (1)已知f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(cs πx,x≤1,,fx-1+1,x>1,))则f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))的值为( )
    A.eq \f(1,2) B.-eq \f(1,2) C.-1 D.1
    答案 D
    解析 f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)-1))+1=f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3)))+1
    =cs eq \f(π,3)+1=eq \f(3,2),
    f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=cseq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4π,3)))
    =cs eq \f(2π,3)=-eq \f(1,2),
    ∴f eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(4,3)))+f eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(4,3)))=eq \f(3,2)-eq \f(1,2)=1.
    (2)已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\c1(lg2x,x≥1,,-x+1,x

    相关试卷

    2024年高考数学第一轮复习专题训练第二章 §2.1 函数的概念及其表示:

    这是一份2024年高考数学第一轮复习专题训练第二章 §2.1 函数的概念及其表示,共4页。试卷主要包含了1 函数的概念及其表示,了解函数的含义等内容,欢迎下载使用。

    2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示:

    这是一份2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示,共3页。试卷主要包含了已知f=lg x,则f的值为等内容,欢迎下载使用。

    2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示:

    这是一份2024年数学高考大一轮复习第二章 §2.1 函数的概念及其表示,共4页。试卷主要包含了1 函数的概念及其表示,了解函数的含义等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map