所属成套资源:高考数学第一轮复习【精品原卷+解析】
高考数学第一轮复习第五章 §5.3 平面向量的数量积
展开
这是一份高考数学第一轮复习第五章 §5.3 平面向量的数量积,共21页。试卷主要包含了向量数量积的运算律等内容,欢迎下载使用。
知识梳理
1.向量的夹角
已知两个非零向量a,b,O是平面上的任意一点,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b的夹角.
2.平面向量的数量积
3.向量数量积的运算律
(1)a·b=b·a.
(2)(λa)·b=λ(a·b)=a·(λb).
(3)(a+b)·c=a·c+b·c.
4.平面向量数量积的有关结论
已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
常用结论
1.平面向量数量积运算的常用公式
(1)(a+b)·(a-b)=a2-b2;
(2)(a±b)2=a2±2a·b+b2.
2.有关向量夹角的两个结论
已知向量a,b.
(1)若a与b的夹角为锐角,则a·b>0;若a·b>0,则a与b的夹角为锐角或0.
(2)若a与b的夹角为钝角,则a·b0,
又a,b不共线,
所以a,b的夹角为锐角,故A错误;
对于B,设向量a,b的夹角为θ,
则cs θ=eq \f(a·b,|a||b|)=eq \f(1,\r(5)×\r(2))=eq \f(\r(10),10),
所以向量a在b上的投影为
|a|cs θ=eq \r(5)×eq \f(\r(10),10)=eq \f(\r(2),2),故B错误;
对于C,a-b=(1,2),若(a-b)∥c,
则-n=2(m-2),变形可得2m+n=4,故C正确;
对于D,由2m+n=4,且m,n均为正数,
得mn=eq \f(1,2)(2m·n)≤eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2m+n,2)))2=2,当且仅当m=1,n=2时,等号成立,即mn的最大值为2,故D错误.
7.(2021·全国甲卷)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则k=________.
答案 -eq \f(10,3)
解析 c=(3,1)+(k,0)=(3+k,1),a·c=3(3+k)+1×1=10+3k=0,得k=-eq \f(10,3).
8.(2020·全国Ⅰ)设a,b为单位向量,且|a+b|=1,则|a-b|=________.
答案 eq \r(3)
解析 将|a+b|=1两边平方,
得a2+2a·b+b2=1.
∵a2=b2=1,
∴1+2a·b+1=1,即2a·b=-1.
∴|a-b|=eq \r(a-b2)=eq \r(a2-2a·b+b2)
=eq \r(1--1+1)=eq \r(3).
9.(2022·长沙模拟)在△ABC中,BC的中点为D,设向量eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b.
(1)用a,b表示向量eq \(AD,\s\up6(→));
(2)若向量a,b满足|a|=3,|b|=2,〈a,b〉=60°,求eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))的值.
解 (1)eq \(AD,\s\up6(→))=eq \f(1,2)(eq \(AB,\s\up6(→))+eq \(AC,\s\up6(→)))
=eq \f(1,2)a+eq \f(1,2)b,
所以eq \(AD,\s\up6(→))=eq \f(1,2)a+eq \f(1,2)b.
(2)eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))=a·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)a+\f(1,2)b))
=eq \f(1,2)a2+eq \f(1,2)a·b
=eq \f(1,2)×32+eq \f(1,2)×3×2×cs 60°=6,
所以eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))=6.
10.(2022·南昌模拟)已知向量m=(eq \r(3)sin x,cs x-1),n=(cs x,cs x+1),若f(x)=m·n.
(1)求函数f(x)的单调递增区间;
(2)在Rt△ABC中,角A,B,C的对边分别为a,b,c,若∠A=90°,f(C)=0,c=eq \r(3),CD为∠BCA的角平分线,E为CD的中点,求BE的长.
解 (1)f(x)=m·n
=eq \r(3)sin x·cs x+cs2x-1
=eq \f(\r(3),2)sin 2x+eq \f(1,2)cs 2x-eq \f(1,2)
=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))-eq \f(1,2).
令2x+eq \f(π,6)∈eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,2),2kπ+\f(π,2)))(k∈Z),
则x∈eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,3),kπ+\f(π,6)))(k∈Z).
所以函数f(x)的单调递增区间为
eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,3),kπ+\f(π,6)))(k∈Z).
(2)f(C)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2C+\f(π,6)))-eq \f(1,2)=0,
sineq \b\lc\(\rc\)(\a\vs4\al\c1(2C+\f(π,6)))=eq \f(1,2),又C∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
所以C=eq \f(π,3).
在△ACD中,CD=eq \f(2\r(3),3),
在△BCE中,
BE=eq \r(22+\b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3)))2-2×2×\f(\r(3),3)×\f(\r(3),2))=eq \f(\r(21),3).
11.(2022·恩施质检)圆内接四边形ABCD中,AD=2,CD=4,BD是圆的直径,则eq \(AC,\s\up6(→))·eq \(BD,\s\up6(→))等于( )
A.12 B.-12
C.20 D.-20
答案 B
解析 如图所示,由题知∠BAD=∠BCD=90°,AD=2,CD=4,
∴eq \(AC,\s\up6(→))·eq \(BD,\s\up6(→))=(eq \(AD,\s\up6(→))+eq \(DC,\s\up6(→)))·eq \(BD,\s\up6(→))
=eq \(AD,\s\up6(→))·eq \(BD,\s\up6(→))+eq \(DC,\s\up6(→))·eq \(BD,\s\up6(→))
=|eq \(AD,\s\up6(→))||eq \(BD,\s\up6(→))|cs∠BDA-|eq \(DC,\s\up6(→))||eq \(BD,\s\up6(→))|cs∠BDC
=|eq \(AD,\s\up6(→))|2-|eq \(DC,\s\up6(→))|2=4-16=-12.
12.在△ABC中,已知eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·eq \(BC,\s\up6(→))=0,且eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)·eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)=eq \f(1,2),则△ABC为( )
A.等边三角形
B.直角三角形
C.等腰三角形
D.三边均不相等的三角形
答案 A
解析 eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|),eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)分别为与eq \(AB,\s\up6(→)),eq \(AC,\s\up6(→))方向相同的单位向量,由平行四边形法则可知向量eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)所在的直线为∠BAC的角平分线.
因为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·eq \(BC,\s\up6(→))=0,
所以∠BAC的角平分线垂直于BC,
所以AB=AC.
又eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)·eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)
=eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)))eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·cs∠BAC=eq \f(1,2),
所以cs∠BAC=eq \f(1,2),∠BAC=60°.
所以△ABC为等边三角形.
13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F1,F2,且F1,F2与水平夹角均为45°,|F1|=|F2|=10eq \r(2) N,则物体的重力大小为________ N.
答案 20
解析 如图所示,∵|F1|=|F2|=10eq \r(2) N,
∴|F1+F2|=10eq \r(2)×eq \r(2)=20 N,
∴物体的重力大小为20 N.
14.(2021·天津)在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF∥AB且交AC于点F,则|2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→))|的值为________;(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))的最小值为________.
答案 1 eq \f(11,20)
解析 设BE=x,x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2))),
∵△ABC为边长为1的等边三角形,DE⊥AB,
∴∠BDE=30°,BD=2x,DE=eq \r(3)x,
DC=1-2x,
∵DF∥AB,∴△DFC为边长为1-2x的等边三角形,DE⊥DF,
∴(2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→)))2=4eq \(BE,\s\up6(→))2+4eq \(BE,\s\up6(→))·eq \(DF,\s\up6(→))+eq \(DF,\s\up6(→))2=4x2+4x(1-2x)×cs 0°+(1-2x)2=1,
∴|2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→))|=1,
∵(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))=(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·(eq \(DE,\s\up6(→))+eq \(EA,\s\up6(→)))=eq \(DE,\s\up6(→))2+eq \(DF,\s\up6(→))·eq \(EA,\s\up6(→))=(eq \r(3)x)2+(1-2x)×(1-x)=5x2-3x+1=5eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,10)))2+eq \f(11,20),
∴当x=eq \f(3,10)时,(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))的最小值为eq \f(11,20).
15.定义一种向量运算“⊗”:a⊗b=eq \b\lc\{\rc\ (\a\vs4\al\c1(a·b,当a,b不共线时,,|a-b|,当a,b共线时))(a,b是任意的两个向量).对于同一平面内的向量a,b,c,e,给出下列结论,正确的是( )
A.a⊗b=b⊗a
B.λ(a⊗b)=(λa)⊗b(λ∈R)
C.(a+b)⊗c=a⊗c+b⊗c
D.若e是单位向量,则|a⊗e|≥|a|+1
答案 A
解析 当a,b共线时,a⊗b=|a-b|=|b-a|=b⊗a,当a,b不共线时,a⊗b=a·b=b·a=b⊗a,故A正确;
当λ=0,b≠0时,λ(a⊗b)=0,(λa)⊗b=|0-b|≠0,故B错误;
当a+b与c共线时,则存在a,b与c不共线,(a+b)⊗c=|a+b-c|,a⊗c+b⊗c=a·c+b·c,显然|a+b-c|≠a·c+b·c,故C错误;
当e与a不共线时,|a⊗e|=|a·e|
相关试卷
这是一份2024年高考数学第一轮复习专题训练81练第五章 §5.3 平面向量的数量积,共3页。
这是一份2024年高考数学第一轮复习专题训练第五章 §5.3 平面向量的数量积,共5页。
这是一份2024年数学高考大一轮复习第五章 §5.3 平面向量的数量积,共3页。