终身会员
搜索
    上传资料 赚现金

    高考数学第一轮复习第五章 §5.3 平面向量的数量积 试卷

    立即下载
    加入资料篮
    高考数学第一轮复习第五章 §5.3 平面向量的数量积第1页
    高考数学第一轮复习第五章 §5.3 平面向量的数量积第2页
    高考数学第一轮复习第五章 §5.3 平面向量的数量积第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学第一轮复习第五章 §5.3 平面向量的数量积

    展开

    这是一份高考数学第一轮复习第五章 §5.3 平面向量的数量积,共21页。试卷主要包含了向量数量积的运算律等内容,欢迎下载使用。

    知识梳理
    1.向量的夹角
    已知两个非零向量a,b,O是平面上的任意一点,作eq \(OA,\s\up6(→))=a,eq \(OB,\s\up6(→))=b,则∠AOB=θ(0≤θ≤π)叫做向量a与b的夹角.
    2.平面向量的数量积
    3.向量数量积的运算律
    (1)a·b=b·a.
    (2)(λa)·b=λ(a·b)=a·(λb).
    (3)(a+b)·c=a·c+b·c.
    4.平面向量数量积的有关结论
    已知非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.
    常用结论
    1.平面向量数量积运算的常用公式
    (1)(a+b)·(a-b)=a2-b2;
    (2)(a±b)2=a2±2a·b+b2.
    2.有关向量夹角的两个结论
    已知向量a,b.
    (1)若a与b的夹角为锐角,则a·b>0;若a·b>0,则a与b的夹角为锐角或0.
    (2)若a与b的夹角为钝角,则a·b0,
    又a,b不共线,
    所以a,b的夹角为锐角,故A错误;
    对于B,设向量a,b的夹角为θ,
    则cs θ=eq \f(a·b,|a||b|)=eq \f(1,\r(5)×\r(2))=eq \f(\r(10),10),
    所以向量a在b上的投影为
    |a|cs θ=eq \r(5)×eq \f(\r(10),10)=eq \f(\r(2),2),故B错误;
    对于C,a-b=(1,2),若(a-b)∥c,
    则-n=2(m-2),变形可得2m+n=4,故C正确;
    对于D,由2m+n=4,且m,n均为正数,
    得mn=eq \f(1,2)(2m·n)≤eq \f(1,2)eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2m+n,2)))2=2,当且仅当m=1,n=2时,等号成立,即mn的最大值为2,故D错误.
    7.(2021·全国甲卷)已知向量a=(3,1),b=(1,0),c=a+kb.若a⊥c,则k=________.
    答案 -eq \f(10,3)
    解析 c=(3,1)+(k,0)=(3+k,1),a·c=3(3+k)+1×1=10+3k=0,得k=-eq \f(10,3).
    8.(2020·全国Ⅰ)设a,b为单位向量,且|a+b|=1,则|a-b|=________.
    答案 eq \r(3)
    解析 将|a+b|=1两边平方,
    得a2+2a·b+b2=1.
    ∵a2=b2=1,
    ∴1+2a·b+1=1,即2a·b=-1.
    ∴|a-b|=eq \r(a-b2)=eq \r(a2-2a·b+b2)
    =eq \r(1--1+1)=eq \r(3).
    9.(2022·长沙模拟)在△ABC中,BC的中点为D,设向量eq \(AB,\s\up6(→))=a,eq \(AC,\s\up6(→))=b.
    (1)用a,b表示向量eq \(AD,\s\up6(→));
    (2)若向量a,b满足|a|=3,|b|=2,〈a,b〉=60°,求eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))的值.
    解 (1)eq \(AD,\s\up6(→))=eq \f(1,2)(eq \(AB,\s\up6(→))+eq \(AC,\s\up6(→)))
    =eq \f(1,2)a+eq \f(1,2)b,
    所以eq \(AD,\s\up6(→))=eq \f(1,2)a+eq \f(1,2)b.
    (2)eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))=a·eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)a+\f(1,2)b))
    =eq \f(1,2)a2+eq \f(1,2)a·b
    =eq \f(1,2)×32+eq \f(1,2)×3×2×cs 60°=6,
    所以eq \(AB,\s\up6(→))·eq \(AD,\s\up6(→))=6.
    10.(2022·南昌模拟)已知向量m=(eq \r(3)sin x,cs x-1),n=(cs x,cs x+1),若f(x)=m·n.
    (1)求函数f(x)的单调递增区间;
    (2)在Rt△ABC中,角A,B,C的对边分别为a,b,c,若∠A=90°,f(C)=0,c=eq \r(3),CD为∠BCA的角平分线,E为CD的中点,求BE的长.
    解 (1)f(x)=m·n
    =eq \r(3)sin x·cs x+cs2x-1
    =eq \f(\r(3),2)sin 2x+eq \f(1,2)cs 2x-eq \f(1,2)
    =sineq \b\lc\(\rc\)(\a\vs4\al\c1(2x+\f(π,6)))-eq \f(1,2).
    令2x+eq \f(π,6)∈eq \b\lc\[\rc\](\a\vs4\al\c1(2kπ-\f(π,2),2kπ+\f(π,2)))(k∈Z),
    则x∈eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,3),kπ+\f(π,6)))(k∈Z).
    所以函数f(x)的单调递增区间为
    eq \b\lc\[\rc\](\a\vs4\al\c1(kπ-\f(π,3),kπ+\f(π,6)))(k∈Z).
    (2)f(C)=sineq \b\lc\(\rc\)(\a\vs4\al\c1(2C+\f(π,6)))-eq \f(1,2)=0,
    sineq \b\lc\(\rc\)(\a\vs4\al\c1(2C+\f(π,6)))=eq \f(1,2),又C∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(π,2))),
    所以C=eq \f(π,3).
    在△ACD中,CD=eq \f(2\r(3),3),
    在△BCE中,
    BE=eq \r(22+\b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),3)))2-2×2×\f(\r(3),3)×\f(\r(3),2))=eq \f(\r(21),3).
    11.(2022·恩施质检)圆内接四边形ABCD中,AD=2,CD=4,BD是圆的直径,则eq \(AC,\s\up6(→))·eq \(BD,\s\up6(→))等于( )
    A.12 B.-12
    C.20 D.-20
    答案 B
    解析 如图所示,由题知∠BAD=∠BCD=90°,AD=2,CD=4,
    ∴eq \(AC,\s\up6(→))·eq \(BD,\s\up6(→))=(eq \(AD,\s\up6(→))+eq \(DC,\s\up6(→)))·eq \(BD,\s\up6(→))
    =eq \(AD,\s\up6(→))·eq \(BD,\s\up6(→))+eq \(DC,\s\up6(→))·eq \(BD,\s\up6(→))
    =|eq \(AD,\s\up6(→))||eq \(BD,\s\up6(→))|cs∠BDA-|eq \(DC,\s\up6(→))||eq \(BD,\s\up6(→))|cs∠BDC
    =|eq \(AD,\s\up6(→))|2-|eq \(DC,\s\up6(→))|2=4-16=-12.
    12.在△ABC中,已知eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·eq \(BC,\s\up6(→))=0,且eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)·eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)=eq \f(1,2),则△ABC为( )
    A.等边三角形
    B.直角三角形
    C.等腰三角形
    D.三边均不相等的三角形
    答案 A
    解析 eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|),eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)分别为与eq \(AB,\s\up6(→)),eq \(AC,\s\up6(→))方向相同的单位向量,由平行四边形法则可知向量eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)所在的直线为∠BAC的角平分线.
    因为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)+\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·eq \(BC,\s\up6(→))=0,
    所以∠BAC的角平分线垂直于BC,
    所以AB=AC.
    又eq \f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)·eq \f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)
    =eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(\(AB,\s\up6(→)),|\(AB,\s\up6(→))|)))eq \b\lc\|\rc\|(\a\vs4\al\c1(\f(\(AC,\s\up6(→)),|\(AC,\s\up6(→))|)))·cs∠BAC=eq \f(1,2),
    所以cs∠BAC=eq \f(1,2),∠BAC=60°.
    所以△ABC为等边三角形.
    13.(2022·潍坊模拟)如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态,已知两条绳上的拉力分别是F1,F2,且F1,F2与水平夹角均为45°,|F1|=|F2|=10eq \r(2) N,则物体的重力大小为________ N.
    答案 20
    解析 如图所示,∵|F1|=|F2|=10eq \r(2) N,
    ∴|F1+F2|=10eq \r(2)×eq \r(2)=20 N,
    ∴物体的重力大小为20 N.
    14.(2021·天津)在边长为1的等边三角形ABC中,D为线段BC上的动点,DE⊥AB且交AB于点E,DF∥AB且交AC于点F,则|2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→))|的值为________;(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))的最小值为________.
    答案 1 eq \f(11,20)
    解析 设BE=x,x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2))),
    ∵△ABC为边长为1的等边三角形,DE⊥AB,
    ∴∠BDE=30°,BD=2x,DE=eq \r(3)x,
    DC=1-2x,
    ∵DF∥AB,∴△DFC为边长为1-2x的等边三角形,DE⊥DF,
    ∴(2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→)))2=4eq \(BE,\s\up6(→))2+4eq \(BE,\s\up6(→))·eq \(DF,\s\up6(→))+eq \(DF,\s\up6(→))2=4x2+4x(1-2x)×cs 0°+(1-2x)2=1,
    ∴|2eq \(BE,\s\up6(→))+eq \(DF,\s\up6(→))|=1,
    ∵(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))=(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·(eq \(DE,\s\up6(→))+eq \(EA,\s\up6(→)))=eq \(DE,\s\up6(→))2+eq \(DF,\s\up6(→))·eq \(EA,\s\up6(→))=(eq \r(3)x)2+(1-2x)×(1-x)=5x2-3x+1=5eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,10)))2+eq \f(11,20),
    ∴当x=eq \f(3,10)时,(eq \(DE,\s\up6(→))+eq \(DF,\s\up6(→)))·eq \(DA,\s\up6(→))的最小值为eq \f(11,20).
    15.定义一种向量运算“⊗”:a⊗b=eq \b\lc\{\rc\ (\a\vs4\al\c1(a·b,当a,b不共线时,,|a-b|,当a,b共线时))(a,b是任意的两个向量).对于同一平面内的向量a,b,c,e,给出下列结论,正确的是( )
    A.a⊗b=b⊗a
    B.λ(a⊗b)=(λa)⊗b(λ∈R)
    C.(a+b)⊗c=a⊗c+b⊗c
    D.若e是单位向量,则|a⊗e|≥|a|+1
    答案 A
    解析 当a,b共线时,a⊗b=|a-b|=|b-a|=b⊗a,当a,b不共线时,a⊗b=a·b=b·a=b⊗a,故A正确;
    当λ=0,b≠0时,λ(a⊗b)=0,(λa)⊗b=|0-b|≠0,故B错误;
    当a+b与c共线时,则存在a,b与c不共线,(a+b)⊗c=|a+b-c|,a⊗c+b⊗c=a·c+b·c,显然|a+b-c|≠a·c+b·c,故C错误;
    当e与a不共线时,|a⊗e|=|a·e|

    相关试卷

    2024年高考数学第一轮复习专题训练81练第五章 §5.3 平面向量的数量积:

    这是一份2024年高考数学第一轮复习专题训练81练第五章 §5.3 平面向量的数量积,共3页。

    2024年高考数学第一轮复习专题训练第五章 §5.3 平面向量的数量积:

    这是一份2024年高考数学第一轮复习专题训练第五章 §5.3 平面向量的数量积,共5页。

    2024年数学高考大一轮复习第五章 §5.3 平面向量的数量积:

    这是一份2024年数学高考大一轮复习第五章 §5.3 平面向量的数量积,共3页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map