所属成套资源:备战2024新高考高中数学二轮重难点+热点专题
备战2024新高考-高中数学二轮重难点专题28-圆锥曲线中三角形与四边形面积问题
展开
这是一份备战2024新高考-高中数学二轮重难点专题28-圆锥曲线中三角形与四边形面积问题,文件包含2024新高考二轮重难点专题28圆锥曲线中三角形四边形面积问题原卷版docx、2024新高考二轮重难点专题28圆锥曲线中三角形四边形面积问题解析版docx等2份教案配套教学资源,其中教案共23页, 欢迎下载使用。
2024高考数学二轮复习重难点专题28圆锥曲线中三角形四边形面积问题【考点预测】1、三角形的面积处理方法(1)底·高(通常选弦长做底,点到直线的距离为高)(2)水平宽·铅锤高或(3)在平面直角坐标系中,已知的顶点分别为,,,三角形的面积为.2、三角形面积比处理方法(1)对顶角模型(2)等角、共角模型3、四边形面积处理方法(1)对角线垂直(2)一般四边形(3)分割两个三角形4、面积的最值问题或者取值范围问题一般都是利用面积公式表示面积,然后将面积转化为某个变量的一个函数,再求解函数的最值(一般处理方法有换元,基本不等式,建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值,构造函数求导等等),在算面积的过程中,优先选择长度为定值的线段参与运算,灵活使用割补法计算面积,尽可能降低计算量.【题型归纳目录】题型一:三角形的面积问题之底·高题型二:三角形的面积问题之分割法题型三:三角形、四边形的面积问题之面积坐标化题型四:三角形的面积比问题之共角、等角模型题型五:三角形的面积比问题之对顶角模型题型六:四边形的面积问题之对角线垂直模型题型七:四边形的面积问题之一般四边形【典例例题】题型一:三角形的面积问题之底·高例1.已知圆,圆,动圆与圆内切,与圆外切.为坐标原点.(1)若求圆心的轨迹的方程.(2)若直线与曲线交于、两点,求面积的最大值,以及取得最大值时直线的方程. 题型二:三角形的面积问题之分割法例2.已知椭圆的离心率为,且C的左、右焦点与短轴的两个端点构成的四边形的面积为.(1)求椭圆C的方程;(2)若直线与x轴交于点M,与椭圆C交于P,Q两点,过点P与x轴垂直的直线与椭圆C的另一个交点为N,求面积的最大值. 题型三:三角形、四边形的面积问题之面积坐标化例3.椭圆经过点且离心率为;直线与椭圆交于A,两点,且以为直径的圆过原点.(1)求椭圆的方程;(2)若过原点的直线与椭圆交于两点,且,求四边形面积的最大值. 题型四:三角形的面积比问题之共角、等角模型例4.已知椭圆的右焦点为,上顶点为H,O为坐标原点,,点在椭圆E上.(1)求椭圆E的方程;(2)设经过点且斜率不为0的直线l与椭圆E相交于A,B两点,点,.若M,N分别为直线AP,BQ与y轴的交点,记,的面积分别为,,求的值. 例5.已知点P(2,)为椭圆C:)上一点,A,B分别为C的左、右顶点,且△PAB的面积为5.(1)求C的标准方程;(2)过点Q(1,0)的直线l与C相交于点G,H(点G在x轴上方),AG,BH与y轴分别交于点M,N,记,分别为△AOM,△AON(点O为坐标原点)的面积,证明为定值. 题型五:三角形的面积比问题之对顶角模型例6.已知椭圆的右焦点为F,直线PQ过F交椭圆于P,Q两点,且.(1)求椭圆的长轴和短轴的比值;(2)如图,线段PQ的垂直平分线与PQ交于点M,与x轴,y轴分别交于D,E两点,求的取值范围. 题型六:四边形的面积问题之对角线垂直模型例7.在平面直角坐标系中,动圆与圆内切,且与圆外切,记动圆的圆心的轨迹为.(1)求轨迹的方程;(2)不过圆心且与轴垂直的直线交轨迹于两个不同的点,连接交轨迹于点.(i)若直线交轴于点,证明:为一个定点;(ii)若过圆心的直线交轨迹于两个不同的点,且,求四边形面积的最小值. 题型七:四边形的面积问题之一般四边形例7.如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.(1)求的方程;(2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
相关教案
这是一份备战2024新高考-高中数学二轮重难点专题33-圆锥曲线中定点定值问题,文件包含2024新高考二轮重难点专题33圆锥曲线中定点定值问题原卷版docx、2024新高考二轮重难点专题33圆锥曲线中定点定值问题解析版docx等2份教案配套教学资源,其中教案共29页, 欢迎下载使用。
这是一份备战2024新高考-高中数学二轮重难点专题32-圆锥曲线中圆的问题,文件包含2024新高考二轮重难点专题32圆锥曲线中圆的问题原卷版docx、2024新高考二轮重难点专题32圆锥曲线中圆的问题解析版docx等2份教案配套教学资源,其中教案共23页, 欢迎下载使用。
这是一份备战2024新高考-高中数学二轮重难点专题31-圆锥曲线中存在性问题的探究,文件包含2024新高考二轮重难点专题31圆锥曲线中存在性问题的探究原卷版docx、2024新高考二轮重难点专题31圆锥曲线中存在性问题的探究解析版docx等2份教案配套教学资源,其中教案共23页, 欢迎下载使用。