所属成套资源:中考数学二轮复习基础题型篇含解析答案
中考数学二轮复习模块三函数 二次函数题型练含解析答案
展开
这是一份中考数学二轮复习模块三函数 二次函数题型练含解析答案,共32页。试卷主要包含了下列各式中,是的二次函数的是,已知点P,以x为自变量的函数,若函数y=等内容,欢迎下载使用。
二次函数 题型练
学校:___________姓名:___________班级:___________考号:___________
评卷人
得分
一、单选题
1.下列各式中,是的二次函数的是( )
A. B. C. D.
2.抛物线y=2x2, y=-2x2, y=x2的共同性质是( )
A.开口向上 B.对称轴是y轴 C.都有最高点 D.y随x的增大而增大
3.已知点P(m,n)在抛物线y=a(x﹣5)2+9(a≠0)上,当3<m<4时,总有n>1,当7<m<8时,总有n<1,则a的值为( )
A.1 B.﹣1 C.2 D.﹣2
4.把抛物线y=-2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是( )
A. B.
C. D.
5.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac2,其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
6.如图,在矩形ABCD中,,,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发,沿BC边向点C以2cm/s的速度移动,分别到达B,C两点就停止运动,则△PQB的面积最大时,所用时间为( )
A.2s B.3s C.4s D.5s
7.小明在某次投篮中,球的运动路线是抛物线的一部分,如图所示,若命中篮圈中心,则他与篮底的距离L是( )
A.4.6m B.4.5m C.4m D.3.5m
8.以x为自变量的函数:①;②;③;④.是二次函数的有( )
A.②③ B.②③④ C.①②③ D.①②③④
9.若函数y=(a﹣1)x2+2x+a2﹣1是二次函数,则( )
A.a≠1 B.a≠﹣1 C.a=1 D.a=±1
10.下列关于抛物线和的关系的说法中,错误的是( )
A.它们有共同的顶点和对称轴
B.它们都是关于y轴对称
C.它们的形状相同,开口方向相反
D.点A(-2,4)在这抛物线上,也在抛物线的图像上.
11.关于抛物线:,下列说法正确的是( ).
A.它的开口方向向上 B.它的顶点坐标是
C.当时,y随x的增大而增大 D.对称轴是直线
12.已知某二次函数,当时,y随x的增大而增大;当时,y随x的增大而减小,则该二次函数的解析式可以是( )
A. B. C. D.
13.若二次函数y=(m-3)x2+m2-9的图象的顶点是坐标原点,则m的值是( )
A.3 B.-3 C.±3 D.无法确定
14.当k分别取1,0,-1时,关于抛物线y=2x2+k有以下判断:①开口方向相同;②对称轴相同;③形状、大小相同;④都有最高点.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
15.关于x的二次函数与的性质中,下列说法错误的是( )
A.开口方向相同
B.对称轴相同
C.顶点坐标相同
D.当时,随x的增大而减小;随x的增大而增大
16.已知二次函数y=ax2+bx+c中,y与x的部分对应值如下:
x
1.1
1.2
1.3
1.4
1.5
1.6
y
-1.59
-1.16
-0.71
-0.24
0.25
0.76
则一元二次方程ax2+bx+c=0的一个解x满足条件( )
A.1.2<x<1.3 B.1.3<x<1.4 C.1.4<x<1.5 D.1.5<x<1.6
17.已知二次函数,当时,,当时,,则当时,y的取值范围为( )
A. B. C. D.
评卷人
得分
二、填空题
18.将抛物线y=x2+3向右平移2个单位后,所得抛物线顶点是 .
19.某同学利用描点法画二次函数y=ax2+bx+c(a≠0)的图象时,列出的部分数据如下表:
序号
①
②
③
④
⑤
x
0
1
2
3
4
y
3
0
﹣2
0
3
经检查,发现表格中恰好有一组数据计算错误,请你找出错误的那组数据 .(只填序号)
20.将抛物线变成顶点式为 .
21.若二次函数的图象过(﹣3,0)、(1,0)、(0,﹣3)三点,则这个二次函数的解析式为 .
22.抛物线y=2x2﹣2x与x轴的交点坐标为 .
23.如图,抛物线与直线的两个交点坐标分别为,,则关于的方程的解为 .
24.二次函数的部分图象如图所示,由图象可知,方程的解为 ;不等式的解集为 .
25.已知方程2x2﹣3x﹣5=0两根为,﹣1,则抛物线y=2x2﹣3x﹣5与x轴两个交点间距离为 .
26.如图,一座抛物线型拱桥,桥下水面宽度是4m时,拱高为2m,一艘木船宽2m.要能顺利从桥下通过,船顶点与桥拱之间的间隔应不少于0.3m,那么木船的高不得超过 m.
27.如图,有一个横截面边缘为抛物线的隧道入口,隧道入口处的底面宽度为,两侧距底面高处各有一盏灯,两灯间的水平距离为,则这个隧道入口的最大高度为 .
28.已知y= 是关于x的二次函数,则a的值为 .
29.二次函数,点在函数图像上,当时, (填“﹥”或“﹤”).
30.二次函数的图像以x轴为对称轴翻折,翻折后它的函数解析式是 .
31.如图,已知经过原点的抛物线的对称轴是直线,下列结论中:①,②,③当时,.正确的个数是 个
32.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)abc>0;(3)b2-4ac>0;(4)5a+c=0;(5)若m≠2,则m(am+b)>2(2a+b),其中正确的结论有 (填序号).
评卷人
得分
三、解答题
33.在同一直角坐标系中,画出下列二次函数的图象:
.
34.某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
35.如图,斜坡长10米,按图中的直角坐标系可用表示,点、分别在轴和轴上,在坡上的处有喷灌设备,喷出的水柱呈抛物线形落到处,抛物线可用表示.
(1)求抛物线的函数关系式;
(2)求水柱离坡岗的最大高度.
36.某工厂前年的生产总值为10万元,去年比前年的年增长率为x,预计今年比去年的年增长率仍为x,今年的总产值为y万元.
(1)求y关于x的函数关系式.
(2)当x=20%时,今年的总产值为多少?
(3)在(2)的条件下,前年、去年和今年三年的总产值为多少万元?
37.如图,已知二次函数的图象经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)求这个二次函数的对称轴、顶点坐标;
(3)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积.
38.已知二次函数的图象经过点(0,0),且它的顶点坐标是(1,-2).
(1)求这个二次函数的表达式;
(2)判断点(3,5)是否在这个二次函数的图像上,并说明理由.
39.已知二次函数的图象与轴有公共点.
(1)求的取值范围;
(2)当为正整数时,求此时二次函数与轴的交点坐标.
40.在美化校园的活动中,某兴趣小组用总长为米的围栏材料,一面靠墙,围成一个矩形花园,墙长米,设的长为米,矩形花园的面积为平方米,当为多少时,取得最大值,最大值是多少?
41. 如图,已知抛物线经过A(2,0)、B(0,-6)两点,其对称轴与轴交于点C
(1)求该抛物线和直线BC的解析式;
(2)设抛物线与直线BC相交于点D,连结AB、AD,求△ABD的面积.
42.随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李林从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为(单位:千米),乘坐地铁的时间(单位:分钟)是关于的一次函数,其关系如下表:
地铁站
(千米)
8
9
10
11.5
13
(分钟)
18
20
22
25
28
(1)求关于的函数表达式.
(2)李林骑单车的时间(单位:分钟)也受的影响,其关系可以用来描述,请问:李林应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.
43.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
说明:①汽车数量为整数;
②月利润=月租车费-月维护费;
③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.
在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;
(2)求两公司月利润差的最大值;
(3)甲公司热心公益事业,每租出1辆汽车捐出a元给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
44.已知二次函数.
(1)当该二次函数的图象经过点时,求该二次函数的表达式;
(2)在(1) 的条件下,二次函数图象与x轴的另一个交点为点B,与y轴的交点为点C,点P从点A出发在线段AB上以每秒2个单位长度的速度向点B运动,同时点Q从点B出发,在线段BC上以每秒1个单位长度的速度向点C运动,直到其中一点到达终点时,两点停止运动,求△BPQ面积的最大值;
(3)若对满足的任意实数x,都使得成立,求实数b的取值范围.
参考答案:
1.C
【分析】根据二次函数的定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数求解可得.
【详解】解:A、y=3x-1是一次函数,不符合题意;
B、中右边不是整式,不是二次函数,不符合题意;
C、y=3x2+x-1是二次函数,符合题意;
D、中右边不是整式,不是二次函数,不符合题意;
故选:C.
【点睛】本题主要考查二次函数的定义,解题的关键是掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.
2.B
【分析】根据二次函数的图象与性质解题.
【详解】抛物线y=2x2, y=x2 开口向上,对称轴是对称轴是y轴,有最低点,在y轴的右侧,y随x的增大而增大,y=-2x2,开口向下,对称轴是对称轴是y轴,有最高点,在y轴的左侧,y随x的增大而增大,
故抛物线y=2x2, y=-2x2, y=x2的共同性质是对称轴是y轴,
故选:B.
【点睛】本题考查二次函数图象的性质,是重要考点,难度较易,掌握相关知识是解题关键.
3.D
【分析】根据抛物线的解析式可以确定抛物线的顶点和增减性,再根据已知条件确定a的符号和关于a的不等式,从而得到a的值.
【详解】解:∵抛物线y=a(x﹣5)2+9(a≠0),
∴抛物线的顶点为(5,9),
∵当7<m<8时,总有n<1,
∴a不可能大于0,
则a<0,
∴x<5时,y随x的增大而增大,x>5时,y随x的增大而减小,
∵当3<m<4时,总有n>1,当7<m<8时,总有n<1,且x=3与x=7对称,
∴m=3时,n≥1,m=7时,n≤1,
∴,
∴4a+9=1,
∴a=﹣2,
故选:D.
【点睛】本题考查二次函数的图象与性质,熟练掌握二次函数的顶点坐标、增减性及其与图象的关系是解题关键.
4.B
【分析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.
【详解】抛物线向上平移1个单位,可得,再向右平移1个单位得到的抛物线是.
故选B.
【点睛】本题考查了二次函数图象的平移,其规律是:将二次函数解析式转化成顶点式y=a(x-h)2+k (a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移; k值正上移,负下移”.
5.C
【详解】①∵抛物线开口向下,∴a<0,
∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,
∵抛物线与y轴的交点在x轴上方,∴c>0,
∴abc>0,所以①正确,符合题意;
②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac
相关试卷
这是一份中考数学二轮复习模块一数与式分式题型练含解析答案,共19页。试卷主要包含了当时,下列分式有意义的是,若分式的值为,则的值为,已知x=2y,则分式,下列计算中,正确的是,某冠状病毒直径为132nm,对于分式,当x=a时等内容,欢迎下载使用。
这是一份中考数学二轮复习模块三函数 正反比例函数题型练含解析答案,共27页。试卷主要包含了y=x,下列结论正确的是,设,表示两个变量,在下列关系式,若函数y=,下列函数中,随的增大而减小的是等内容,欢迎下载使用。
这是一份中考数学二轮复习模块三函数 一次函数题型练含解析答案,共39页。试卷主要包含了下列4个函数关系,下列函数关系不是一次函数的是,下列函数图象中,表示直线的是,关于直线,下列说法不正确的是,下面哪个点不在函数的图象上等内容,欢迎下载使用。