所属成套资源:八年级数学上册《重难点题型•高分突破》(北师大版)
- 专题01 勾股定理中的最短路径问题与翻折问题(五大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版) 试卷 5 次下载
- 专题03 实数重难点题型分类(八大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版) 试卷 4 次下载
- 专题04 实数综合经典解答题(六大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版) 试卷 4 次下载
- 专题05 平面直角坐标系重难点题型(四大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版) 试卷 5 次下载
- 专题06 一次函数常考重难点题型(十大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版) 试卷 7 次下载
专题02 勾股定理的经典实际应用(五大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版)
展开
这是一份专题02 勾股定理的经典实际应用(五大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版),文件包含专题02勾股定理的经典实际应用五大题型原卷版docx、专题02勾股定理的经典实际应用五大题型解析版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。
专题02 勾股定理的经典实际应用(五大题型) 重难点题型归纳 【题型1 梯子滑落问题】【题型2 树枝旗子折断问题】【题型3 航海是否有影响问题】【题型4 风吹荷花问题】【题型5垂美四边形问题】(1)构造直角三角形解决问题;(2)垂美四边形【定义】对角线互相垂直的四边形叫做垂美四边形.【结论】如图,四边形ABCD的对角线AC⊥BD,则①AB²+CD²=AD²+BC². ②S四ABCD= AC·BD【题型1 梯子滑落问题】【典例1】(2023春•随县期末)如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?【变式1-1】(2023春•郧阳区期末)如图,某工人在两墙AB,CD之间施工(两墙与地面垂直),架了一架长为2.5m的梯子DE,此时梯子底端E距离墙角C点0.7m,由于E点没有固定好,向后滑动到墙角B处,使梯子顶端D沿墙下滑了0.4m到F处,求梯子底端E向后滑动的距离BE的长. 【变式1-3】(2022秋•雁塔区校级期中)如图,一架13米长的梯子AB斜靠在墙上,刚好梯顶A与地面的距离AO为12米.如果梯子底部水平滑动的距离BB′为3米,求梯顶下滑的距离AA′为多少米? 【变式1-4】(2023春•淮南期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为( )A.0.7米 B.1.5米 C.2.2米 D.2.4米【变式1-5】(2023春•庐阳区校级期中)如图,梯子AB斜靠在一竖直的墙AO上,这时BO为7m.如果梯子的顶端A沿墙下滑4m,那么梯子底端B也外移8m,则梯子AB的长为( )A.24 B.25 C.15 D.20【变式1-6】(2022秋•黔江区期末)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7m,梯子顶端到地面的距离AC为2.4m.如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A'D为1.5m,则小巷的宽为( )A.2.4m B.2m C.2.5m D.2.7m 【题型2 树枝旗子折断问题】【典例2-1】(2023春•鹤山市校级期中)在一棵树的10米高的B处有两只猴子.一只猴子爬下树走到离树20米的池塘的A处.另一只爬到树顶D后直接跃到A处.距离以直线计算.如果两只猴子所经过的距离相等.则这棵树高多少米? 【典例2-2】(2023春•南宁期中)如图1,同学们想测量旗杆的高度.他们发现系在旗杆顶端的绳子垂到了地面,并多出了一段,但这条绳子的长度未知.小明和小亮同学应用勾股定理分别提出解决这个问题的方案如下:小明:①测量出绳子垂直落地后还剩余1.5米,如图1;②把绳子拉直,绳子末端在地面上离旗杆底部6米,如图2.小亮:先在旗杆底端的绳子上打了一个结,然后举起绳结拉到如图3点D处.(1)请你按小明的方案求出旗杆的高度;(2)已知小亮举起绳结离旗杆6.75米远,此时绳结离地面多高? 【变式2-1】(2023春•东港区校级期中)由于大风,山坡上的一棵树甲被从A点处拦腰折断,如图所示,其树顶端恰好落在另一棵树乙的根部C处,已知AB=4米,BC=13米,两棵树的水平距离为12米,求这棵树原来的高度. 【变式2-2】(2021秋•临渭区期末)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.【变式2-3】(2022秋•常州期末)数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端A的绳子沿旗杆垂到地面时,测得多出部分BC的长为2m(如图1),再将绳子拉直(如图2),测得绳子末端的位置D到旗杆底部B的距离为6m,求旗杆AB的长. 【变式2-4】(2022秋•城关区期末)如图所示,小刚想知道学校的旗杆有多高,他发现旗杆上的绳子垂到地面还多了0.8m,当他把绳子下端拉开4m后,发现下端刚好接触地面,小刚算了算就知道了旗杆的高度.你知道他是怎样算出来的吗? 【题型3 航海是否有影响问题】【典例3-1】(2023春•黄冈期中)如图所示,某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗? 【典例3-2】(2023春•邢台期中)如图,经过A村和B村(将A,B村看成直线l上的点)的笔直公路1旁有一块山地正在开发,现需要在C处进行爆破.已知C处与A村的距离为900米,C处与B村的距离为1200米,且AC⊥BC.(1)求A,B两村之间的距离;(2)为了安全起见,爆破点C周围半径750米范围内不得进入,在进行爆破时,公路AB段是否有危险而需要封锁?如果需要,请计算需要封锁的路段长度;如果不需要,请说明理由. 【变式3-1】(2023春•千山区期中)如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,6分钟后同时到达C处将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西23°.(1)求甲巡逻艇的航行方向;(2)成功拦截后,甲、乙两艘巡逻艇同时沿原方向返回且速度不变,3分钟后甲、乙两艘巡逻艇相距多少海里? 【变式3-2】(2023•灞桥区校级模拟)如图,海中有一小岛P,它的周围12海里内有暗礁,渔船跟踪鱼群由西向东航行,在M处测得小岛P在北偏东60°方向上,航行16海里到N处,这时测得小岛P在北偏东30°方向上.如果渔船不改变航线继续向东航行,是否有触礁危险,并说明理由. 【变式3-3】(2022春•天元区期中)某岛C周围4海里内有暗礁,一轮船沿正东方向航行,在A处测得该岛在东偏南15°处,继续航行10海里到达B处,又测得该岛位于东偏南30°处,若该船不改变航向,有无触礁危险? 【变式3-4】(2021•黄州区校级自主招生)南海诸岛自古以来都是中国的领土,4月12日,中央军委在南海海域隆重举行海上阅兵,军委主席习近平登上长沙舰检阅海军舰艇编队,包括辽宁号航母在内的48艘舰艇参加了阅兵仪式.如图,A、B是两处海港,其中A在B东偏南30〫方向千米处,辽宁号航母从海港A出发,沿东偏北45〫方向,以15千米/小时的速度匀速航行,两小时后,长沙舰从海港B出发,沿东偏北15〫的方向匀速航行,两舰恰好同时到达阅兵地点C.(1)长沙舰从海港出发航行到达阅兵地点用了多少时间?(2)求长沙舰的航行速度.(结果保留根号) 【变式3-5】(2023春•青阳县期末)在甲村至乙村的公路旁有一块山地正在开发,现有一C处需要爆破,已知点C与公路上的停靠站A的距离为300米,与公路上另一停靠站B的距离为400米,且CA⊥CB,如图,为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否而需要暂时封锁?请通过计算进行说明. 【变式3-6】(2022春•大方县期中)如图第4号台风“黑格比”的中心于2020年8月5日下午位于浙江省绍兴市境内的B处,最大风力有9级(23m/s),中心最低气压为990百帕,台风中心沿大约东北(BC)方向以25km/h的速度向D移动在距离B地250km的正北方有一A地,已知A地到BC的距离AD=70km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心70km的圆形区域内都将有受到台风破坏的危险,正在D点休闲的游人在接到台风警报后的几个小时内撤离才可脱离危险?【题型4 风吹荷花问题】【典例4】(2022秋•南关区校级期末)如图,水池中离岸边D点4米的C处,直立长着一根芦苇,出水部分BC的长是2米,把芦苇拉到岸边,它的顶端B恰好落到D点,则水池的深度AC为多少米. 【变式4-1】(2022秋•朝阳区期末)如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm,内壁高12cm.若这支铅笔长为18cm,则这只铅笔在笔筒外面部分长度不可能的是( )A.3cm B.5cm C.6cm D.8cm【变式4-2】(2022秋•兴平市期末)在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是 尺.【变式4-3】(2023春•新化县期末)如图,有一架秋千,当它静止时,踏板离地的垂直高度DE=1m,将它往前推送4m(水平距离BC=4m)时,秋千的踏板离地的垂直高度BF=2m,秋千的绳索始终拉得很直,求绳索AD的长度. 【题型5垂美四边形问题】【典例5】(2022春•颍上县校级期末)我们定义:对角线互相垂直的四边形叫做垂美四边形.(1)如图1,垂美四边形ABCD的对角线AC,BD交于O.求证:AB2+CD2=AD2+BC2;(2)如图2,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接BE,CG,GE.①求证:四边形BCGE是垂美四边形;②若AC=4,AB=5,求GE的长. 【变式5-1】(2023•泸县校级三模)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=5,BC=12,则AB2+CD2= .【变式5-2】(2022秋•卧龙区校级期末)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=4,则AB2+CD2= .【变式5-3】(2022秋•达川区校级月考)对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O.若AD=,BC=3,则AB2+CD2= 23 .
相关试卷
这是一份专题09 圆重难点题型专训(十大题型)-2023-2024学年九年级数学上册重难点高分突破(浙教版),文件包含专题09圆重难点题型专训十大题型原卷版docx、专题09圆重难点题型专训十大题型解析版docx等2份试卷配套教学资源,其中试卷共82页, 欢迎下载使用。
这是一份专题02 二次函数的应用重难点题型专训-2023-2024学年九年级数学上册重难点高分突破(浙教版),文件包含专题02二次函数的应用重难点题型专训原卷版docx、专题02二次函数的应用重难点题型专训解析版docx等2份试卷配套教学资源,其中试卷共97页, 欢迎下载使用。
这是一份专题03 实数重难点题型分类(八大题型)-2023-2024学年八年级数学上册《重难点题型•高分突破》(北师大版),文件包含专题03实数重难点题型分类八大题型原卷版docx、专题03实数重难点题型分类八大题型解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。