专题13 压轴大题精选分类练-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版)
展开1.已知抛物线y=ax2+bx+3经过点A(1,0)和点B(﹣3,0),与y轴交于点C,点P为第二象限内抛物线上的动点.
(1)求抛物线的解析式;
(2)过P点作x轴的垂线分别交BC、x轴于点D、E,设点P的横坐标为m.
①用含m的代数式表示线段PD的长;
②连接BP、CP,是否存在点P,使得四边形BPCO的面积最大?若存在,请求出四边形BPCO的最大面积;若不存在,请说明理由.
2.如图,在直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A(﹣3,0)、B(1,0),与y轴交于点C.
(1)求抛物线的函数表达式.
(2)在抛物线上是否存在点D,使得△ABD的面积等于△ABC的面积的53倍?若存在,求出点D的坐标;若不存在,请说明理由.
(3)若点E是以点C为圆心且1为半径的圆上的动点,点F是AE的中点,请直接写出线段OF的最大值和最小值.
3.如图1,若抛物线l1的顶点A在抛物线l2上,抛物线l2的顶点B也在抛物线l1上(点A与点B不重合).我们称抛物线l1,l2互为“友好”抛物线,一条抛物线的“友好”抛物线可以有多条.
(1)如图2,抛物线l3:y=12(x﹣2)2﹣1与y轴交于点C,点D与点C关于抛物线的对称轴对称,则点D的坐标为 ;
(2)求以点D为顶点的l3的“友好”抛物线l4的表达式,并指出l3与l4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物线y=a1(x﹣m)2+n的任意一条“友好”抛物线的表达式为y=a2(x﹣h)2+k,写出a1与a2的关系式,并说明理由.
4.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,OA=1,OB=3,抛物线的顶点坐标为D(1,4).
(1)求A、B两点的坐标;
(2)求抛物线的表达式;
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上A、D两点间的一个动点(点P不于A、D两点重合),PA、PB与直线DE分别交于点G、F,当点P运动时,EF+EG的值是否变化,如不变,试求出该值;若变化,请说明理由.
5.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.
(1)求抛物线的解析式及点C的坐标;
(2)求△ABC的面积;
(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.
6.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.
(1)试求抛物线解析式;
(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由;
(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.
7.如图,抛物线y=﹣x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(﹣1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒2个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).
(1)直接写出b,c的值及点D的坐标;
(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;
(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.
8.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.
(1)求这条抛物线相应的函数表达式;
(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;
(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.
二.相似综合
9.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<t<4),连接PQ,MQ,解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)当t为何值时,∠CPQ=45°?
(3)当t为何值时,PQ⊥MQ?
10.在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.
(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;
(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;
(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为 .
专题12 选择压轴题分类练(七大考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版): 这是一份专题12 选择压轴题分类练(七大考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版),文件包含专题12选择压轴题分类练七大考点原卷版docx、专题12选择压轴题分类练七大考点解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
专题09 巧用隐圆,妙解压轴-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版): 这是一份专题09 巧用隐圆,妙解压轴-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版),文件包含专题09巧用隐圆妙解压轴原卷版docx、专题09巧用隐圆妙解压轴解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
专题01 高频考点精选选择50道(38个考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版): 这是一份专题01 高频考点精选选择50道(38个考点)-2022-2023学年九年级数学上学期期末分类复习满分冲刺(苏科版),文件包含专题01高频考点精选选择50道38个考点原卷版docx、专题01高频考点精选选择50道38个考点解析版docx等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。