|课件下载
搜索
    上传资料 赚现金
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)
    立即下载
    加入资料篮
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)01
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)02
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)03
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)04
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)05
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)06
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)07
    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)08
    还剩40页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析)

    展开
    这是一份新高考数学二轮复习考点突破课件 第1部分 专题突破 专题4 微重点11 球的切接问题(含解析),共48页。PPT课件主要包含了内容索引,空间几何体的外接球,考点一,又EB=1,规律方法,空间几何体的内切球,考点二,专题强化练等内容,欢迎下载使用。

    空间几何体的外接球、内切球是高中数学的重点、难点,也是高考命题的热点,一般是通过对几何体的割补或寻找几何体外接球的球心求解外接球问题,利用等体积法求内切球半径等,一般出现在压轴小题位置.
    (1)(2022·保定模拟)已知三棱锥P-ABC,其中PA⊥平面ABC,∠BAC=120°,PA=AB=AC=2,则该三棱锥外接球的表面积为A.12π B.16π C.20π D.24π
    ∵PA⊥平面ABC,所以把三棱锥P-ABC补成直三棱柱PB′C′-ABC,如图所示,设E,F为上、下底面三角形的外心,则EF的中点O为直三棱柱PB′C′-ABC的球心,在△ABC中,
    设该三棱锥外接球半径为R,
    ∴表面积S=4πR2=20π.
    (2)(2022·宝鸡模拟)两个边长为2的正三角形△ABC与△ABD,沿公共边AB折叠成60°的二面角,若点A,B,C,D在同一球O的球面上,则球O的表面积为
    如图,设△ABC与△ABD的中心分别为N,M,连接DM,CN并延长交AB于E,连接OE,OB,OM,ON.根据外接球的性质有OM⊥平面ABD,ON⊥平面ABC,又二面角D-AB-C的大小为60°,故∠DEC=60°,
    易得Rt△MEO≌Rt△NEO,故∠MEO=∠NEO=30°,
    求解空间几何体的外接球问题的策略(1)定球心:球心到接点的距离相等且为半径;(2)作截面:选准最佳角度作出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.
    设四面体ABCD的外接球的半径为R,将四面体ABCD置于长、宽、高分别为a,b,c的长方体中,
    故四面体ABCD的外接球的表面积为4πR2=45π.
    (2)(2022·临川模拟)已知在四棱锥P-ABCD中,底面ABCD为边长是4的正方形,侧面PAB⊥底面ABCD,且△PAB为等边三角形,则该四棱锥P-ABCD的外接球的表面积为
    如图所示,在四棱锥P-ABCD中,取侧面△PAB和底面正方形ABCD的外接圆的圆心分别为O1,O2,分别过O1,O2作两个平面的垂线交于点O,则由外接球的性质知,点O即为该球的球心,取线段AB的中点E,连接O1E,O2E,O2D,OD,则四边形O1EO2O为矩形,
    在Rt△OO2D中,可得OD2=OO+O2D2,
    所以四棱锥P-ABCD的外接球的表面积为
    (1)(2022·酒泉模拟)在三棱锥A-BCD中,AB⊥平面BCD,BC⊥CD,且AB=CD=4,BC=3,则该三棱锥内切球的体积为
    由AB⊥平面BCD,CD⊂平面BCD,得AB⊥CD.又BC⊥CD,且AB,BC⊂平面ABC,AB∩BC=B,所以CD⊥平面ABC,又AC⊂平面ABC,所以CD⊥AC.由AB=CD=4,BC=3,得AC=BD=5,所以三棱锥A-BCD的表面积
    设三棱锥内切球球心为O,半径为r,
    (2)(2022·湖北多校联考)已知在△ABC中,AB=4,BC=3,AC=5,以AC为轴旋转一周得到一个旋转体,则该旋转体的内切球的表面积为
    旋转体的轴截面如图所示,其中O为内切球的球心,过O作AB,BC的垂线,垂足分别为E,F,则OE=OF=r(r为内切球的半径),
    空间几何题的内切球问题,一是找球心,球心到切点的距离相等且为球的半径,作出截面,在截面中求半径;二是利用等体积法直接求内切球的半径.
      (1)在封闭的直三棱柱ABC-A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=6,则V的最大值是
    由题意,因为AB⊥BC,AB=6,BC=8,所以AC=10,
    又由AA1=6,故在直三棱柱ABC-A1B1C1的内部的球半径最大为R=2,
    (2)(2022·西安模拟)六氟化硫,化学式为SF6,在常温常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫的分子结构为正八面体结构(正八面体是每个面都是正三角形的八面体),如图所示.若此正八面体的棱长为2,则它的内切球的表面积为
    设正八面体内切球半径为R,给正八面体标出字母如图所示,连接AC,BD交于点O,连接EO,因为EA=EC,ED=EB,所以EO⊥AC,EO⊥BD,又AC和BD交于点O,所以EO⊥平面ABCD,所以O为正八面体的中心,所以O到八个面的距离相等,且距离即为内切球半径,设内切球与平面EBC切于点H,所以OH⊥平面EBC,
    所以OH即为正八面体内切球半径,所以R=OH,因为正八面体的棱长为2,
    1.(2022·九江模拟)如图,在边长为2的正方形ABCD中,E,F分别为线段AB,BC的中点,连接DE,DF,EF,将△ADE,△CDF,△BEF分别沿DE,DF,EF折起,使A,B,C三点重合,得到三棱锥O-DEF,则该三棱锥外接球的表面积为
    在正方形ABCD中,AD⊥AE,CD⊥CF,BE⊥BF,折起后OD,OE,OF两两垂直,故该三棱锥外接球即以OD,OE,OF为棱的长方体外接球.因为OD=2,OE=1,OF=1,
    所以该三棱锥外接球的表面积为4πR2=6π.
    2.(2022·佛山模拟)如图,某几何体由共底面的圆锥和圆柱组合而成,且圆柱的两个底面和圆锥的顶点均在体积为36π的球面上,若圆柱的高为2,则圆锥的侧面积为
    依题意,做球的轴截图如图所示,其中,O是球心,E是圆锥的顶点,EC是圆锥的母线,
    解得R=3,由于圆柱的高为2,
    3.(2022·济宁模拟)若一个正六棱柱既有外接球又有内切球,则该正六棱柱的外接球和内切球的表面积的比值为A.2∶1 B.3∶2C.7∶3 D.7∶4
    如图,设O1,O2分别为正六棱柱的底面中心,r为内切球半径,R为外接球半径,O为O1O2的中点,D为AB的中点,设正六棱柱的底面边长为2,若正六棱柱有内切球,
    则该正六棱柱的外接球和内切球的表面积的比值为4πR2∶4πr2=R2∶r2=7∶3.
    4.(2022·芜湖模拟)半正多面体亦称阿基米德多面体,是由边数不全相同的正多边形为面的多面体.如图所示,将正方体沿交于一顶点的三条棱的中点截去一个三棱锥,如此共可截去八个三棱锥,得到一个有十四个面的半正多面体,其中八个面为正三角形,六个面为正方形,它们的边长都相等,称这样的半正多面体为二十四等边体.现有一个体积为V1的二十四等边体,其外接球体积为V2,
    设该半正多面体是由棱长为2的正方体沿正方体各棱的中点截去8个三棱锥所得,即为二十四等边体,如图所示
    由二十四等边体的对称性可知,其外接球的球心即为正方体的中心O,半径为中心到一个顶点的距离,
    设球O的外切正方体的棱长为b,则b满足b=2r,显然选项D正确.
    所以PA2+AC2=CP2,得CA⊥PA,由D是PB的中点,得AD⊥PB,
    又PA∩AD=A,PA,AD⊂平面PAB,所以AC⊥平面PAB,故B正确;
    即球心O到底面PAB的距离为1,故C错误;
    7.(2022·漳州模拟)某中学开展劳动学习,学习加工制作包装盒.现将一张足够用的正方形硬纸片加工制作成轴截面的顶角为60°,高为6的圆锥形包装盒,若在该包装盒中放入一个球形冰淇淋(内切),则该球形冰淇淋的表面积为________.
    如图,由题意知,∠BAC=60°,AO1=6,
    设内切球球心为O,半径为R,则OD=OO1=R,在Rt△ADO中,∠OAD=30°,所以2R=6-R,解得R=2,所以S=4πR2=16π.
    8.(2022·烟台质检)如图,在四棱锥P-ABCD中,△PAD是边长为4的等边三角形,四边形ABCD是等腰梯形,AD∥BC,∠ABC=60°,AB=AD,若四棱锥P-ABCD的体积为24,则四棱锥P-ABCD外接球的表面积是________.
    如图,分别取BC,AD的中点O′,E,连接PE,O′E,O′A,O′D.
    因为四边形ABCD是等腰梯形,AB=AD=4,AD∥BC,∠ABC=60°,
    因为四棱锥P-ABCD的体积为24,设四棱锥P-ABCD的高为h,
    因为E是AD的中点,所以PE⊥AD.
    因为O′A=O′B=O′C=O′D=4,所以四边形ABCD外接圆的圆心为O′,半径r=4.设四棱锥P-ABCD外接球的球心为O,连接OO′,OP,OB,过点O作OF⊥PE,垂足为F.易证四边形EFOO′是矩形,
    相关课件

    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题3 微重点10 子数列问题(含解析): 这是一份新高考数学二轮复习考点突破课件 第1部分 专题突破 专题3 微重点10 子数列问题(含解析),共47页。PPT课件主要包含了内容索引,偶数项,考点一,规律方法,当n为奇数时,两数列的公共项,考点二,n2-2n,分段数列,考点三等内容,欢迎下载使用。

    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题1 微重点4 函数的公切线问题(含解析): 这是一份新高考数学二轮复习考点突破课件 第1部分 专题突破 专题1 微重点4 函数的公切线问题(含解析),共57页。PPT课件主要包含了求两函数的公切线,考点一,y=ex-1或y=x,规律方法,考点二,判断公切线条数,考点三,∴直线l的方程为,消去x2得,求参数的取值范围等内容,欢迎下载使用。

    新高考数学二轮复习考点突破课件 第1部分 专题突破 专题1 微重点3 导数中的函数构造问题(含解析): 这是一份新高考数学二轮复习考点突破课件 第1部分 专题突破 专题1 微重点3 导数中的函数构造问题(含解析),共45页。PPT课件主要包含了内容索引,导数型构造函数,考点一,规律方法,3+∞,同构法构造函数,考点二,专题强化练,2+∞等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map