终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析)

    立即下载
    加入资料篮
    新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析)第1页
    新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析)第2页
    新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析)第3页
    还剩13页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析)

    展开

    这是一份新高考数学一轮复习讲练测专题3.1函数的概念及其表示(讲)(含解析),共16页。
    专题3.1  函数的概念及其表示新课程考试要求1.了解函数的概念,会求简单的函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法.3.了解简单的分段函数,会用分段函数解决简单的问题.核心素养培养学生数学抽象(例1.3)、数学运算(例2--12)、数学建模(例9)、直观想象(例5.10)等核心数学素养.考向预测1.分段函数的应用,要求不但要理解分段函数的概念,更要掌握基本初等函数的图象和性质.2.函数的概念,经常与函数的图象和性质结合考查. 【知识清单】1函数的概念 函数两个集合ABAB是两个非空数集对应关系fAB如果按照某种确定的对应关系f使对于集合A中的任意一个数x在集合B中都有唯一确定的数f(x)和它对应2函数的定义域、值域(1)在函数yf(x)xAx叫做自变量x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值函数值的集合{f(x)|xA}叫做函数的值域.(2)如果两个函数的定义域相同并且对应关系完全一致则这两个函数为相等函数.3分段函数(1)若函数在其定义域的不同子集上对应关系不同而分别用几个不同的式子来表示这种函数称为分段函数.(2)分段函数的定义域等于各段函数的定义域的并集其值域等于各段函数的值域的并集分段函数虽由几个部分组成但它表示的是一个函数.考点分类剖析考点一   函数的概念【典例1【多选题】2021·浙江高一期末)在下列四组函数中,不表示同一函数的是(    A BC D【答案】ACD【解析】根据同一函数的要求,两个函数的定义域和对应法则应相同,对四个选项中的两个函数分别进行判断,得到答案.【详解】A选项,定义域为的定义域为,所以二者不是同一函数,故A符合题意;B选项,,与定义域相同,对应法则也相同,所以二者是同一函数,故B不符合题意;C选项,定义域为的定义域为,所以二者不是同一函数, 故C符合题意;D选项,定义域为的定义域为,所以二者不是同一函数,故D符合题意;故选:ACD.【规律方法】函数的三要素中,若定义域和对应关系相同,则值域一定相同.因此判断两个函数是否相同,只需判断定义域、对应关系是否分别相同.【变式探究】2021·浙江高一期末)下列函数中,与函数是相等函数的是(    A B C D【答案】B【解析】依次判断各个选项的解析式和定义域是否和相同,二者皆相同即为同一函数,由此得到结果.【详解】的定义域为对于A定义域为,与定义域不同,不是同一函数,A错误;对于B,与定义域相同,解析式相同,是同一函数,B正确;对于C定义域为,与定义域不同,不是同一函数,C错误;对于D,与解析式不同,不是同一函数,D错误.故选:B.【易混辨析】1.判断两个函数是否为相同函数,注意把握两点,一看定义域是否相等,二看对应法则是否相同2.从图象看,直线x=a与图象最多有一个交点.考点二:求函数的定义域【典例2】(2019·江苏高考真题)函数的定义域是_____.【答案】.【解析】由已知得,解得故函数的定义域为.【典例3】2021·全国高一课时练习)(1)已知的定义域为,求函数的定义域;2)已知的定义域为,求的定义域;3)已知函数的定义域为,求函数的定义域.【答案】(1;(2;(3.【解析】利用抽象函数的定义域求解.【详解】1中的的范围与中的x的取值范围相同.的定义域为2)由题意知中的.的取值范围与中的x的取值范围相同,的定义域为3函数的定义域为,得的定义域为,即函数的定义域为.【规律方法】1.已知函数的具体解析式求定义域的方法(1)若f(x)是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.(2)复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.2.抽象函数的定义域的求法(1)若已知函数f(x)的定义域为[ab],则复合函数f(g(x))的定义域由ag(x)≤b求出.(2)若已知函数f(g(x))的定义域为[ab],则f(x)的定义域为g(x)在x[ab]时的值域.【变式探究】1.函数的定义域为(  )A. B.C. D.【答案】C【解析】故答案选C2.(2020·河南省郑州一中高二期中(文))已知函数定义域是 ,则的定义域是(    A.[0,] B. C. D. 【答案】A【解析】因为函数定义域是所以所以,解得:故函数的定义域是[0,]故选A【特别提醒】求函数的定义域,往往要解不等式或不等式组,因此,要熟练掌握一元一次不等式、一元二次不等式的解法、牢记不等式的性质,学会利用数形结合思想,借助数轴解题.另外,函数的定义域、值域都是集合,要用适当的表示方法加以表达或依据题目的要求予以表达.高频考点三:求函数的解析式【典例42021·全国高一课时练习)已知f=x2+,则函数f(x)=_______f3=_______【答案】    11    【解析】利用换元法可求出,进一步可得.【详解】,则所以,所以所以.故答案为:.【典例52021·全国高三专题练习)如图所示,函数的图象是折线段ABC,其中ABC的坐标分别为(04)(20)(64),求函数的解析式.【答案】【解析】根据图象分段求出解析式,再写成分段的形式即可得解.【详解】设线段所对应的函数解析式为代入,得所以同理,线段所对应的函数解析式为所以.规律方法1.已知函数类型,用待定系数法求解析式.2.已知函数图象,用待定系数法求解析式,如果图象是分段的,要用分段函数表示.3.已知,或已知,用代入法、换元法配凑法.4.满足某个等式,可构造另一个等式,通过解方程组求解.5.应用题求解析式可用待定系数法求解.【变式探究】1.已知单调函数,对任意的都有,则(    )A. 2    B. 4    C. 6    D. 8【答案】C【解析】,则,且,则解得故选C22021·全国高一课时练习)已知二次函数满足1)求的解析式.2)求上的最大值.【答案】(1;(23【解析】1)设,代入求解,化简求解系数.2)将二次函数配成顶点式,分析其单调性,即可求出其最值.【详解】1)设,则由题恒成立.    2)由(1)可得所以单调递减,在单调递增,且.考点四:求函数的值域
    【典例6函数的值域为(       A. B. C. D.【答案】C【解析】时,(当且仅当,即时取等号),的值域为.故选:.【典例7【多选题】2021·全国高三专题练习)已知函数的定义域为,值域为,则(    A.函数的定义域为 B.函数的值域为C.函数的定义域和值域都是 D.函数的定义域和值域都是【答案】BC【解析】根据抽象函数的定义域即可判断选项A,根据值域为,即可判断选项B,令得范围即为定义域,由可得值域,即可判断选项C,由的值域为可得,但无法判断定义域,可判断选项D,进而可得正确选项.【详解】对于选项A:令可得,所以函数的定义域为故选项A不正确;对于选项B:因为值域为,所以的值域为,可得函数的值域为,故选项B正确;对于选项C:令,因为可得恒成立,所以函数的定义域为,因为,所以函数的值域为,故选项C正确;对于选项D:若函数的值域是,则,此时无法判断其定义域是否为,故选项D不正确,故选:BC【典例8】2021·浙江高一期末)函数的定义域是_________,函数的值域为__________【答案】        【解析】解不等式,即可求出定义域;利用换元法,令,将原函数转化为关于的二次函数,求值域即可.【详解】,得,解得故函数的定义域是.,则所以原函数可化为,其对称轴为所以函数上单调递增,所以所以函数的值域为.故答案为:【规律方法】函数值域的常见求法:(1)配方法配方法是求“二次函数型函数”值域的基本方法,形如F(x)=a[f(x)]2bf(x)+c(a≠0)的函数的值域问题,均可使用配方法.(2)数形结合法若函数的解析式的几何意义较明显,如距离、斜率等,可用数与形结合的方法.(3)基本不等式法要注意条件“一正,二定,三相等”.(可见上一专题)(4)利用函数的单调性单调函数的图象是一直上升或一直下降的,因此若单调函数在端点处有定义,则该函数在端点处取最值,即yf(x)在[ab]上单调递增,则y最小f(a),y最大f(b);yf(x)在[ab]上单调递减,则y最小f(b),y最大f(a).形如yaxb的函数,若ad>0,则用单调性求值域;若ad<0,则用换元法.形如yx(k>0)的函数,若不能用基本不等式,则可考虑用函数的单调性,当x>0时,函数yx(k>0)的单调减区间为(0,],单调增区间为[,+∞).一般地,把函数yx(k>0,x>0)叫做对勾函数,其图象的转折点为(,2),至于x<0的情况,可根据函数的奇偶性解决.*(5)导数法利用导函数求出最值,从而确定值域.高频考点分段函数及其应用【典例9】2021·河南新乡市·高三月考(理))如图,在正方形中,从点出发,沿向,以每个单位的速度在正方形的边上运动;点从点出发,沿方向,以每秒个单位的速度在正方形的边上运动.与点同时出发,运动时间为(单位:秒)的面积为(规定共线时其面积为零,则点第一次到达点时,的图象为(    A BC D【答案】A【解析】根据题意,分别求出当,对应的函数解析式,进而得答案.【详解】根据题意,当,的面积为,的面积为,的面积为,的面积为所以所以根据分段函数的解析式即可得在区间上的函数图像为选项A.故选:A.【典例102021·四川达州市·高三二模(理))已知函数,则的取值范围是__________【答案】【解析】,且,结合图象有,从而得到求解.【详解】函数的图象如图所示:,且所以,则其对称轴为所以上递增,在上递增,所以所以的取值范围是故答案为:【典例11】2021·全国高一课时练习)对于任意的实数表示中较小的那个数,若,则集合_______的最大值是_______.【答案】    1    【解析】作出函数的图象,解出方程可得,由图可得,然后可得其最大值.【详解】函数的图象如下,,即解得则集合 由题意及图象得由图象知,当时,最大,最大值是1.故答案为:1【典例12(江苏高考真题)已知实数,函数,若,则a的值为________【答案】【解析】分当时和当时两种分别讨论求解方程,可得答案.【详解】时,,所以解得,不满足,舍去;时,,所以解得,满足.故答案为:.【总结提升】1.分段求解处理分段函数问题解的基本原则2.数形结合往往是解答选择、填空题的捷径.【变式探究】1.2021·全国高一课时练习)已知a>,则函数f(x)=x2+|x-a|的最小值是(    Aa2+1 Ba+Ca- Da-【答案】D【解析】先化简函数的解析式得再分类讨论,求出每一段的最小值,即得函数的最小值.【详解】函数f(x)=x2+|x-a|=xa>时,函数f(x)=x2+x-a的对称轴方程为x=-,函数在[a+∞)上单调递增,其最小值为a2x<a时,f(x)=x2-x+a的对称轴方程为x=,当x=时函数求得最小值为a-.因为a2-=a2-a+=>0.所以a2>a-.所以函数f(x)=x2+|x-a|的最小值是a-.故选:D2.2021·全国高一课时练习)已知函数f(x)f1=_______,若f(f(0))=a,则实数a=_______.【答案】5        【解析】结合函数由内到外逐层计算,可得出关于的等式,进而可解得实数的值.【详解】所以解得故答案为:5 

    相关试卷

    新高考数学一轮复习讲练测专题3.9函数的实际应用(讲)(含解析):

    这是一份新高考数学一轮复习讲练测专题3.9函数的实际应用(讲)(含解析),共16页。

    新高考数学一轮复习讲练测专题3.7函数的图象(讲)(含解析):

    这是一份新高考数学一轮复习讲练测专题3.7函数的图象(讲)(含解析),共26页。

    新高考数学一轮复习讲练测专题1.1集合(讲)(含解析):

    这是一份新高考数学一轮复习讲练测专题1.1集合(讲)(含解析),共11页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map