所属成套资源:全国各地区2021-2023三年中考数学真题按题型难易度分层分类汇编
辽宁省大连市2021-2023三年中考数学真题分类汇编-02填空题知识点分类
展开
这是一份辽宁省大连市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共14页。
辽宁省大连市2021-2023三年中考数学真题分类汇编-02填空题知识点分类一.由实际问题抽象出一元一次方程(共3小题)1.(2023•大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为 .2.(2022•大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为 .3.(2021•大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 .二.解分式方程(共1小题)4.(2022•大连)方程=1的解是 .三.解一元一次不等式(共2小题)5.(2023•大连)不等式﹣3x>9的解集是 .6.(2021•大连)不等式3x<x+6的解集是 .四.函数关系式(共1小题)7.(2021•大连)如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上,AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为 .五.勾股定理(共1小题)8.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是 .六.菱形的性质(共1小题)9.(2023•大连)如图,菱形ABCD的对角线AC,BD相交于点O,∠ADC=60°,AC=10,E是AD的中点,则OE的长是 .七.正方形的性质(共1小题)10.(2023•大连)如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE相交于点F,连接DF,则DF的长为 .八.弧长的计算(共1小题)11.(2022•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是 (结果保留π).九.翻折变换(折叠问题)(共2小题)12.(2022•大连)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A的对应点A'落在EF上,并使折痕经过点B,得到折痕BM,连接MF,若MF⊥BM,AB=6cm,则AD的长是 cm.13.(2021•大连)如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=2,则BB′的长是 .一十.坐标与图形变化-平移(共2小题)14.(2022•大连)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是 .15.(2021•大连)在平面直角坐标系中,将点P(﹣2,3)向右平移4个单位长度,得到点P′,则点P′的坐标是 .一十一.概率公式(共1小题)16.(2022•大连)不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是 .一十二.列表法与树状图法(共2小题)17.(2023•大连)一个不透明的口袋中有2个完全相同的小球,分别标号为1,2.随机摸出一个小球记录标号后放回,再随机摸出一个小球记录标号,两次摸出小球标号的和等于3的概率是 .18.(2021•大连)一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为 .
辽宁省大连市2021-2023三年中考数学真题分类汇编-02填空题知识点分类参考答案与试题解析一.由实际问题抽象出一元一次方程(共3小题)1.(2023•大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何.”其大意是:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、鸡价各是多少.”设共有x人合伙买鸡,根据题意,可列方程为 9x﹣11=6x+16 .【答案】9x﹣11=6x+16.【解答】解:由题意得:9x﹣11=6x+16,故答案为:9x﹣11=6x+16.2.(2022•大连)我国古代著作《九章算术》中记载了这样一个问题:“今有共买豕,人出一百,盈一百;人出九十,适足.”其大意是:“今有人合伙买猪,每人出100钱,则会多出100钱;每人出90钱,恰好合适.”若设共有x人,根据题意,可列方程为 100x﹣90x=100 .【答案】100x﹣90x=100.【解答】解:∵每人出90钱,恰好合适,∴猪价为90x钱,根据题意,可列方程为100x﹣90x=100.故答案为:100x﹣90x=100.3.(2021•大连)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:“牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.”若设有牧童x人,根据题意,可列方程为 6x+14=8x .【答案】6x+14=8x.【解答】解:设有牧童x人,依题意得:6x+14=8x.故答案为:6x+14=8x.二.解分式方程(共1小题)4.(2022•大连)方程=1的解是 x=5 .【答案】x=5.【解答】解:=1,2=x﹣3,解得:x=5,检验:当x=5时,x﹣3≠0,∴x=5是原方程的根,故答案为:x=5.三.解一元一次不等式(共2小题)5.(2023•大连)不等式﹣3x>9的解集是 x<﹣3 .【答案】x<﹣3.【解答】解:∵﹣3x>9,∴x<﹣3,故答案为:x<﹣3.6.(2021•大连)不等式3x<x+6的解集是 x<3 .【答案】x<3.【解答】解:3x<x+6,移项,得3x﹣x<6,合并同类项,得2x<6,系数化成1,得x<3,故答案为:x<3.四.函数关系式(共1小题)7.(2021•大连)如图,在正方形ABCD中,AB=2,点E在边BC上,点F在边AD的延长线上,AF=EF,设BE=x,AF=y,当0<x<2时,y关于x的函数解析式为 y=+(0<x<2) .【答案】y=(0<x<2).【解答】解:过点F作FM⊥AE,垂足为M,∵AF=EF,∴AM=ME,在Rt△ABE中,AE==,∴AM=,∵∠B=∠AMF=90°,∠FAM=∠AEB,∴△ABE∽△FMA,∴=,即=,∴xy=,即y==+(0<x<2),故答案为:y=+(0<x<2).五.勾股定理(共1小题)8.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是 +1 .【答案】+1.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB===,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=,∴OC=AC+OA=+1,∵交x轴正半轴于点C,∴点C的坐标为(+1,0).故答案为:+1.六.菱形的性质(共1小题)9.(2023•大连)如图,菱形ABCD的对角线AC,BD相交于点O,∠ADC=60°,AC=10,E是AD的中点,则OE的长是 5 .【答案】5.【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,∴AD=CD,AC⊥BD.∵∠ADC=60°,∴△ACD为等边三角形.∴AD=AC=10.∵E为AD的中点,AC⊥BD,∴OE=AD=5.故答案为:5.七.正方形的性质(共1小题)10.(2023•大连)如图,正方形ABCD中,AB=3,点E在BC的延长线上,且CE=2.连接AE,∠DCE的平分线与AE相交于点F,连接DF,则DF的长为 .【答案】.【解答】解:如图,过F作FM⊥BE于M,FN⊥CD于 N,则四边形CMFN是矩形,FM∥AB,∵CF平分∠DCE,∴∠FCM=∠FCN=45°,∴CM=FM,∴四边形CMFN是正方形,设FM=CM=NF=CN=a,则ME=2﹣a,∵FM∥AB,∴△EFM∽△EAB,∴,即,解得:,∴,由勾股定理得:DF==,故答案为:.八.弧长的计算(共1小题)11.(2022•大连)如图,正方形ABCD的边长是,将对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,则弧CE的长是 π (结果保留π).【答案】π.【解答】解:∵四边形ABCD为正方形,∴∠CAD=45°,AC=AB=×=2,∵对角线AC绕点A顺时针旋转∠CAD的度数,点C旋转后的对应点为E,∴的长度为=π.故答案为:π.九.翻折变换(折叠问题)(共2小题)12.(2022•大连)如图,对折矩形纸片ABCD,使得AD与BC重合,得到折痕EF,把纸片展平.再一次折叠纸片,使点A的对应点A'落在EF上,并使折痕经过点B,得到折痕BM,连接MF,若MF⊥BM,AB=6cm,则AD的长是 5 cm.【答案】5.【解答】解:∵四边形ABCD为矩形,AB=6cm,∴∠A=90°,由折叠性质可得:BE=DF=3cm,A′B=AB=6cm,∠A′EB=90°,∠ABM=∠A′BM,在Rt△A′BE中,A′B=2BE,∴∠BA′E=30°,∴∠A′BE=60°,∴∠ABM=30°,∠AMB=60°,∴AM=tan30°•AB==2cm,∵MF⊥BM,∴∠BMF=90°,∴∠DMF=30°,∴∠DFM=60°,在Rt△DMF中,MD=tan60°•DF=cm,∴AD=AM+DM=2cm.故答案为:5.13.(2021•大连)如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=2,则BB′的长是 2 .【答案】2.【解答】解:∵菱形ABCD,∴AB=AD,AD∥BC,∵∠BAD=60°,∴∠ABC=120°,∵AB′⊥BD,∴∠BAB'=,∵将△ABE沿直线AE翻折180°,得到△AB′E,∴BE=B'E,AB=AB',∴∠ABB'=,∴∠EBB'=∠ABE﹣∠ABB'=120°﹣75°=45°,∴∠EB'B=∠EBB'=45°,∴∠BEB'=90°,在Rt△BEB'中,由勾股定理得:BB'=,故答案为:2.一十.坐标与图形变化-平移(共2小题)14.(2022•大连)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是 (5,2) .【答案】(5,2).【解答】解:将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C的坐标是(1+4,2),即(5,2),故答案为:(5,2).15.(2021•大连)在平面直角坐标系中,将点P(﹣2,3)向右平移4个单位长度,得到点P′,则点P′的坐标是 (2,3) .【答案】见试题解答内容【解答】解:点P(﹣2,3)向右平移4个单位长度后得到点P′的坐标为(﹣2+4,3),即(2,3),故答案为:(2,3).一十一.概率公式(共1小题)16.(2022•大连)不透明袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是 .【答案】.【解答】解:袋子中装有2个黑球、3个白球,这些球除了颜色外无其他差别.从袋子中随机摸出1个球,“摸出黑球”的概率是=,故答案为:.一十二.列表法与树状图法(共2小题)17.(2023•大连)一个不透明的口袋中有2个完全相同的小球,分别标号为1,2.随机摸出一个小球记录标号后放回,再随机摸出一个小球记录标号,两次摸出小球标号的和等于3的概率是 .【答案】.【解答】解:画树状图如下:一共有4种等可能的情况,其中两次摸出小球标号的和等于3有2种可能,∴P(两次摸出小球标号的和等于3)=,故答案为:.18.(2021•大连)一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为 .【答案】.【解答】解:画树状图如图:共有4种等可能的结果,两次取出的小球标号的和等于4的结果有1种,∴两次取出的小球标号的和等于4的概率为,故答案为:.
相关试卷
这是一份陕西省2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共19页。试卷主要包含了计算,分解因式等内容,欢迎下载使用。
这是一份辽宁省盘锦市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共20页。试卷主要包含了计算,分解因式等内容,欢迎下载使用。
这是一份辽宁省阜新市2021-2023三年中考数学真题分类汇编-02填空题知识点分类,共15页。试卷主要包含了0= ,计算,﹣1= 等内容,欢迎下载使用。