所属成套资源:2021年各省份中考数学真题集【附精细解析】
- 2021年浙江省宁波市中考数学真题 试卷 0 次下载
- 2021年四川省自贡市中考数学真题(word版 含解析) 试卷 1 次下载
- 2021年上海市中考数学试卷 试卷 1 次下载
- 山西省2021年中考数学真题 试卷 0 次下载
- 2021年山东省东营市中考数学真题(图片版) 试卷 0 次下载
2021年四川省遂宁市中考数学真题
展开
这是一份2021年四川省遂宁市中考数学真题,共15页。
遂宁市2021年初中毕业暨高中阶段学校招生考试数学试卷本试卷满分150分,考试时间120分钟。注意事项:1.答题前,考生务必将自己的学校、姓名、准考证号用0.5毫米的黑色墨水签字笔填写在答题卡上,并检查条形码粘贴是否正确。2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号;回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。 一、选择题(本大题共10个小题,每小题4分,共40分,在每个小题给出的四个选项中,只有一个符合题目要求.)1. -2021的绝对值是A.-2021 B.2021 C. D.2. 下列计算中,正确的是A. B. C. D. 3.如右图所示的几何体是由6个完全相同的小正方体搭成,其主视图是A. B. C. D.4. 国家统计局2021年5月11日公布了第七次全国人口普查结果,全国总人口约14.1亿人,将14.1亿用科学记数法表示为 14.1×108 B. 1.41×108 C. 1.41×109 D. 0.141×10105. 如右图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积是3cm2,则四边形BDEC的面积为A.12cm2 B.9cm2 C.6cm2 D.3cm2 6. 下列说法正确的是 角平分线上的点到角两边的距离相等 平行四边形既是轴对称图形,又是中心对称图形 在代数式中,是分式 若一组数据2、3、x、1、5的平均数是3,则这组数据的中位数是47. 不等式组的解集在数轴上表示正确的是 B. C. D. 8. 如图,在矩形ABCD中,AB=5,AD=3,点E为BC上一点,把△CDE沿DE翻折,点C 恰好落在AB边上的F处,则CE的长是 A. 1 B. C. D. 9. 如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作DF⊥AC,垂足为点F,若⊙O的半径为,∠CDF=15°, 则阴影部分的面积为A. B. C. D. 10.已知二次函数的图象如图所示,有下列5个结论:①;②;③;④();⑤若方程=1有四个根,则这四个根的和为2.其中正确的结论有 2个 B. 3个 C. 4个 D. 5个二、填空题(本大题共5个小题,每小题4分,共20分)11. 若,则a b= ▲ .12. 如右图,在△ABC中,AB=5,AC=7,直线DE垂直平分BC,垂足为E,交AC于点D,则△ABD的周长是 ▲ . 已知关于x,y的二元一次方程组满足x-y>0,则a的取值范围是 ▲ . 下面图形都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第 ▲ 个图形共有210个小球. 如图,正方形ABCD中,点E是CD边上一点,连结BE,以BE为对角线作正方形BGEF,边EF与正方形ABCD的对角线BD相交于点H,连结AF,有以下五个结论:① ② ③ ④⑤若,则你认为其中正确是 ▲ (填写序号)三、计算或解答题(本大题共10个小题,共90分)16.(7分)计算:▲17.(7分)先化简,再求值:,其中m是已知两边分别为2和3的三角形的第三边长,且m是整数.▲18.(8分)如图,在□ABCD中,对角线AC与BD相交于点O,过点O的直线EF与BA、DC的延长线分别交于点E、F.(1)求证:AE=CF;(2)请再添加一个条件,使四边形BFDE是菱形,并说明理由.▲19.(9分)我市于2021年5月22-23日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加。现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出以下两幅不完整的统计图表,请根据统计图表回答下列问题:类别频数频率不了解10m了解很少160.32基本了解b 很了解4n合计a1 (1)根据以上信息可知:a= ▲ ,b= ▲ ,m= ▲ ,n= ▲ ;(2)补全条形统计图;(3)估计该校1000名初中学生中“基本了解”的人数约有 ▲ 人;(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.▲20.(9分)已知平面直角坐标系中,点P()和直线Ax+By+C=0(其中A,B不全为0),则点P到直线Ax+By+C=0的距离可用公式来计算.例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x-y+1=0,其中A=2,B=-1,C=1,所以点P(1,2)到直线y=2x+1的距离为:.根据以上材料,解答下列问题: (1)求点M(0,3)到直线的距离;(2)在(1)的条件下,⊙M的半径r = 4,判断⊙M与直线的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.▲21.(9分)某服装店以每件30元的价格购进一批T恤,如果以每件40元出售,那么一个月内能售出300件,根据以往销售经验,销售单价每提高1元,销售量就会减少10件,设T恤的销售单价提高元.(1)服装店希望一个月内销售该种T恤能获得利润3360元,并且尽可能减少库存,问T恤的销售单价应提高多少元?(2)当销售单价定为多少元时,该服装店一个月内销售这种T恤获得的利润最大?最大利润是多少元?▲ (9分)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A处看到B、C处各有一棵被湖水隔开的银杏树,他在A处测得B在北偏西45°方向, C在北偏东30°方向,他从A处走了20米到达B处,又在B处测得C在北偏东60°方向.(1)求∠C的度数;(2)求两颗银杏树B、C之间的距离(结果保留根号).▲23.(10分)如图,一次函数=k x + b (k≠0)与反比例函数(m≠0)的图象交于点A(1,2)和B(-2,a),与y轴交于点M.(1)求一次函数和反比例函数的解析式;(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;(3)将直线向下平移2个单位后得到直线y3,当函数值时,求x的取值范围.▲24. (10分)如图,⊙O的半径为1,点A是⊙O的直径BD延长线上的一点,C为⊙O上的一点,AD=CD,∠A=30°.(1)求证:直线AC是⊙O的切线;(2)求△ABC的面积;(3)点E在上运动(不与B、D重合),过点C作CE的垂线,与EB的延长线交于点F. ①当点E运动到与点C关于直径BD对称时,求CF的长;②当点E运动到什么位置时,CF取到最大值,并求出此时CF的长. (备用图)▲ (12分)如图,已知二次函数的图象与x轴交于A和B(-3,0)两点,与y轴交于C(0,-3),对称轴为直线,直线y=-2x+m经过点A,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和m的值;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由;(3)直线y=1上有M、N两点(M在N的左侧),且MN=2,若将线段MN在直线y=1上平移,当它移动到某一位置时,四边形MEFN的周长会达到最小,请求出周长的最小值(结果保留根号)。 (备用图)
遂宁市2021年初中毕业暨高中阶段学校招生考试数学试卷参考答案及评分细则说明:第三大题中,部分题目解法较多,请参照参考答案酌情给分.一、选择题(本大题共10个小题,每小题4分,共40分)题号12345678910答案BDDCBACDAA 二、填空题(本大题共5个小题,每小题4分,共20分)11. - 4 12. 12 13. a>1 14. 20 15. ①②③④ 三、解答题16.(本题7分) 17.(本题7分)∵m是已知两边分别为2和3的三角形的第三边长∴3-2<m<3+2,即1<m<5∵m为整数∴m=2、3、4又∵m≠0、2、3∴m=4....................................6分∴原式=...................................................7分18.(本题8分) 证明:(1)∵四边形是平行四边形∴OA=OC,BE∥DF∴∠E=∠F在△AOE和△COF中∴(A.A.S.).....................................3分 ∴AE=CF ......................................4分(2)方法一:当EF⊥BD时,四边形BFDE是菱形,理由如下:....................5分如图:连结BF,DE∵四边形是平行四边形∴OB=OD∵∴ ∴四边形是平行四边形................7分∵EF⊥BD, ∴四边形是菱形............................8分方法二:当EB=ED时(或其他邻边相等时),四边形BFDE是菱形,理由略.19.(本题9分)解:(1)a= 50 ,b= 20 ,m= 0.2 ,n= 0.08 ,............4分 (2)补全条形统计图如下图:............5分(3)该校1000名初中学生中“基本了解”的人数约有 400人..............6分(4)记4名学生中3名男生分别为A1,A2,A3 ,一名女生为B ,则树状图如下:
开始 或列表为: A1A2A3BA1 (A1,A2)(A1,A3)(A1,B)A2(A2,A1) (A2,A3)(A2,B)A3(A3,A1)(A3,A2) (A3,B)B(B,A1)(B,A2)(B,A3) 从4人中任取两人的所有机会均等结果共有12种............... 7分抽到两名学生均为男生包含:A1A2 A1A3 A2A1 A2A3 A3A1 A3A2 共6种等可能结果,∴P(抽到两名学生均为男生)=抽到一男一女包含:A1B A2B A3B BA1 BA2 BA3 共六种等可能结果∴P(抽到一男一女)= .........................................8分故抽到两名学生均为男生和抽到一男一女的概率相同..................9分20. (本题9分)解:(1)∵y=x+9可变形为x-y+9=0,则其中A=,B=-1,C=9,由公式可得 ∴点M到直线y=x+9的距离为3......................4分 (2)由(1)可知:圆心到直线的距离d=3,圆的半径r=4,∵d<r ∴直线与圆相交............................6分则弦长.............................9分 21.(本题9分)解:(1)由题意列方程得,(x+40-30) (300-10x)=3360 ..............................2分解得:x1=2, x2=18∵要尽可能减少库存,∴x2=18不合题意,应舍去。∴T恤的销售单价应提高2元. ....................................4分(2)设利润为M元,由题意可得: M=(x+40-30) (300-10x) ..........................6分=-10x2+200x+3000 =-10(x-10)2+4000 .............................................................7分∴当x=10时,M最大值 =4000元..........................8分∴销售单价:40+10=50(元)答:当服装店将销售单价50元时,得到最大利润是4000元..........................9分22. (本题9分)方法一:解:(1)由题得:BE∥AD ∵BE∥AD且∠1=60°∴∠2=∠1=60°...............................2分∵∠2=∠C+∠CAD且∠CAD=30°∴∠C=∠2-∠CAD=30°..........................4分(2)过点B作BG⊥AD于G. ∵BG⊥AD ∴∠AGB=∠BGD=90° 在Rt△AGB中,AB=20米,∠BAG=45°AG=BG=20×sin45°=米...................5分在Rt△BGD中,∠2=60°.................................7分∵∠C=∠CAD=30°∴CD=AD=AG+DG=()米∴BC=BD+CD=()米.............................................9分答:两颗银杏树B、C之间的距离为 ()米方法二:解:(1)由题得:AD∥BE,∠1=60°,∠BAC=45°+30°=75° ∵AD∥BE且∠BAD=45° ∴∠3=∠BAD=45° ∵∠1=60° ∴∠ABC=..............................2分 ∵∠BAC=75° ∴∠C= ...................................4分(2)延长EB,CA交于点F,过点A作AH⊥BF于点H.∵AH⊥BF∴∠AHB=∠AHF=90° 在Rt△AHB中,AB=20米,∠3=45°∴AH=BH=20×sin45°=..........5分∵∠1=60°且∠C=30°∴∠F=60°-30=30°在Rt△AHF中,,∠F=30°.......................................7分∵∠C=∠F=30°∴BC=BF=BH+FH=()米......................9分答:两颗银杏树B、C之间的距离为 ()米23.(本题10分)解:(1)∵过点A(1,2) ∴m=1×2=2 即反比例函数:....................1分 当x=-2时,a=-1,即B(-2,-1) ∵y1=kx+b过A(1,2)和B(-2,-1) ∴ ∴y1=x+1..........................................3分(2)当x=0时,代入y=x+1中得,y=1,即M(0,1) ∵S△AMN=1 ∴MN=6...................................................4分 ∴N(0,7)或(0,-5) .........................................................6分(3)如图,设y2与y3的图像交于C,D两点 ∵y1向下平移两个单位得y3且y1=x+1 ∴y3=x-1...................................7分 联立得 ∴C(-1,-2),D(2,1)................................8分 ∵y1>y2>y3 ∴-2<x<-1或1<x<2.................................10分 24.(本题10分)证明:如图所示:(1)连结OC∵AD=CD ,∠A=300∴∠ACD=30° ∴∠CDB=60°..........................1分 ∵OD=OC∴∠OCD=60°∴∠ACO=∠ACD+∠OCD=90°∵OC是半径∴直线AC是⊙O的切线..............3分(2)由题意可得△DCO是等边三角形,CD=AD=OD=1作CH于点H,则DH= ∴CH...................4分∵AB=AD+BD=3∴S△ABC..........................6分(3)①当点运动到与点关于直径对称时,如图所示, 此时CE⊥AB于点K ∵BD为圆的直径∴CE=2CK= ∵CF⊥CE ∴∠ECF=90°∵∠CDB=∠CEB=60° ∴在........................8分②∵点E在弧上运动过程中,∠CDB=∠CEB=60° ∴25题.(本题12分) 连结EM.
相关试卷
这是一份2023年四川省遂宁市中考数学真题,文件包含精品解析四川省遂宁市中考数学真题原卷版docx、精品解析四川省遂宁市中考数学真题解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
这是一份2017年四川省遂宁市中考数学真题及答案,共23页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2023年四川省遂宁市中考数学真题,文件包含四川省遂宁市中考数学真题解析版docx、四川省遂宁市中考数学真题原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。