- 2021年四川省成都市中考数学真题试卷 解析版 试卷 0 次下载
- 2021年上海市中考数学真题试卷解析版 试卷 0 次下载
- 2021年陕西省学业初中考试数学答案(图片) 试卷 0 次下载
- 2021年陕西省学业初中考试数学试(图片)卷 试卷 0 次下载
- 2021年山东省临沂市中考数学真题试卷 解析版 试卷 0 次下载
2021年陕西省中考数学试卷
展开2021年陕西省中考数学试卷
一、选择题(共8小题,每小题3分,计24分。每小题只有一个选项是符合题意的)
1.(3分)计算:3×(﹣2)=( )
A.1 B.﹣1 C.6 D.﹣6
2.(3分)下列图形中,是轴对称图形的是( )
A. B.
C. D.
3.(3分)计算:(a3b)﹣2=( )
A. B.a6b2 C. D.﹣2a3b
4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )
A.60° B.70° C.75° D.85°
5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为( )
A. B. C. D.
6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为( )
A.﹣5 B.5 C.﹣6 D.6
7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是( )
A.6cm B.7cm C.6cm D.8cm
8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
x
…
﹣2
0
1
3
…
y
…
6
﹣4
﹣6
﹣4
…
下列各选项中,正确的是( )
A.这个函数的图象开口向下
B.这个函数的图象与x轴无交点
C.这个函数的最小值小于﹣6
D.当x>1时,y的值随x值的增大而增大
二、填空题(共5小题,每小题3分,计15分)
9.(3分)分解因式x3+6x2+9x= .
10.(3分)正九边形一个内角的度数为 .
11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 .
12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1 y2.(填“>”、“=”或“<”)
13.(3分)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为 .
三、解答题(共13小题,计18分。解答应写出过程)
14.(5分)计算:(﹣)0+|1﹣|﹣.
15.(5分)解不等式组:.
16.(5分)解方程:﹣=1.
17.(5分)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)
18.(5分)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.
20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.
21.(6分)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)
22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:
根据以上信息,回答下列问题:
(1)这60天的日平均气温的中位数为 ,众数为 ;
(2)求这60天的日平均气温的平均数;
(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 m/min;
(2)求AB的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.
(1)求证:∠COB=∠A;
(2)若AB=6,CB=4,求线段FD的长.
25.(8分)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.
(1)求点B、C的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
26.(10分)问题提出
(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.
2021年陕西省中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,计24分。每小题只有一个选项是符合题意的)
1.(3分)计算:3×(﹣2)=( )
A.1 B.﹣1 C.6 D.﹣6
【解答】解:3×(﹣2)=﹣6.
故选:D.
2.(3分)下列图形中,是轴对称图形的是( )
A. B.
C. D.
【解答】解:A.不是轴对称图形,故此选项不合题意;
B.是轴对称图形,故此选项符合题意;
C.不是轴对称图形,故此选项不合题意;
D.不是轴对称图形,故此选项不合题意;
故选:B.
3.(3分)计算:(a3b)﹣2=( )
A. B.a6b2 C. D.﹣2a3b
【解答】解:(a3b)﹣2==.
故选:A.
4.(3分)如图,点D、E分别在线段BC、AC上,连接AD、BE.若∠A=35°,∠B=25°,∠C=50°,则∠1的大小为( )
A.60° B.70° C.75° D.85°
【解答】解:∵∠1=∠B+∠ADB,∠ADB=∠A+∠C,
∴∠1=180°﹣(∠B+∠A+∠C),
∴∠1=180°﹣(25°+35°+50°),
∴∠1=180°﹣110°,
∴∠1=70°,
故选:B.
5.(3分)在菱形ABCD中,∠ABC=60°,连接AC、BD,则的值为( )
A. B. C. D.
【解答】解:设AC与BD交于点O,
∵四边形ABCD是菱形,
∴AO=CO,BO=DO,AC⊥BD,∠ABD=∠ABC=30°,
∵tan∠ABD=,
∴,
故选:D.
6.(3分)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为( )
A.﹣5 B.5 C.﹣6 D.6
【解答】解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,
把(0,0)代入,得到:0=6+m﹣1,
解得m=﹣5.
故选:A.
7.(3分)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是( )
A.6cm B.7cm C.6cm D.8cm
【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,
过B作BM⊥AC于M,过D作DN⊥CE于N,
则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,
∵CD⊥BC,
∴∠BCD=90°,
∴∠BCM+∠CBM=∠BCM+∠DCN=90°,
∴∠CBM=∠DCN,
在△BCM和△CDN中,
,
∴△BCM≌△CDN(AAS),
∴BM=CN,
在Rt△BCM中,
∵BM=5,CM=3,
∴BM===4,
∴CN=4,
∴CE=2CN=2×4=8,
故选:D.
8.(3分)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
x
…
﹣2
0
1
3
…
y
…
6
﹣4
﹣6
﹣4
…
下列各选项中,正确的是( )
A.这个函数的图象开口向下
B.这个函数的图象与x轴无交点
C.这个函数的最小值小于﹣6
D.当x>1时,y的值随x值的增大而增大
【解答】解:设二次函数的解析式为y=ax2+bx+c,
由题知,
解得,
∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,
∴(1)函数图象开口向上,
(2)与x轴的交点为(4,0)和(﹣1,0),
(3)当x=时,函数有最小值为﹣,
(4)函数对称轴为直线x=,根据图象可知当当x>时,y的值随x值的增大而增大,
故选:C.
二、填空题(共5小题,每小题3分,计15分)
9.(3分)分解因式x3+6x2+9x= x(x+3)2 .
【解答】解:原式=x(9+6x+x2)
=x(x+3)2.
故答案为x(x+3)2
10.(3分)正九边形一个内角的度数为 140° .
【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,
则每个内角的度数==140°.
故答案为:140°.
11.(3分)幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a的值为 ﹣2 .
【解答】解:依题意得:﹣1﹣6+1=0+a﹣4,
解得:a=﹣2.
故答案为:﹣2.
12.(3分)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1 < y2.(填“>”、“=”或“<”)
【解答】解:∵2m﹣1<0(m<),
∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,
又∵0<1<3,
∴y1<y2,
故答案为:<.
13.(3分)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为 3+1 .
【解答】解:当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,
过O点作OE⊥BC于E,OF⊥CD于F,
∴OE=OF=1,
∴OC平分∠BCD,
∵四边形ABCD为正方形,
∴点O在AC上,
∵AC=BC=4,OC=OE=,
∴AQ=OA+OQ=4﹣+1=3+1,
即点A到⊙O上的点的距离的最大值为3+1,
故答案为3+1.
三、解答题(共13小题,计18分。解答应写出过程)
14.(5分)计算:(﹣)0+|1﹣|﹣.
【解答】解:原式=1+﹣1﹣2
=﹣.
15.(5分)解不等式组:.
【解答】解:解不等式x+5<4,得:x<﹣1,
解不等式≥2x﹣1,得:x≤3,
∴不等式组的解集为x<﹣1.
16.(5分)解方程:﹣=1.
【解答】解:方程两边都乘以(x+1)(x﹣1)得:(x﹣1)2﹣3=(x+1)(x﹣1),
x2﹣2x+1﹣3=x2﹣1,
x2﹣2x﹣x2=﹣1﹣1+3,
﹣2x=1,
x=﹣,
检验:当x=﹣时,(x+1)(x﹣1)≠0,
所以x=﹣是原方程的解.
17.(5分)如图,已知直线l1∥l2,直线l3分别与l1、l2交于点A、B.请用尺规作图法,在线段AB上求作一点P,使点P到l1、l2的距离相等.(保留作图痕迹,不写作法)
【解答】解:如图,点P为所作.
18.(5分)如图,BD∥AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.
【解答】证明:∵BD∥AC,
∴∠ACB=∠EBD,
在△ABC和△EDB中,
,
∴△ABC≌△EDB(SAS),
∴∠ABC=∠D.
19.(5分)一家商店在销售某种服装(每件的标价相同)时,按这种服装每件标价的8折销售10件的销售额,与按这种服装每件的标价降低30元销售11件的销售额相等.求这种服装每件的标价.
【解答】解:设这种服装每件的标价是x元,根据题意得,
10×0.8x=11(x﹣30),
解得x=110,
答:这种服装每件的标价为110元.
20.(5分)从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.
(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;
(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的牌面数字恰好相同的概率.
【解答】解:(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为=,
故答案为:;
(2)画树状图如图:
共有12种等可能的结果,抽取的这两张牌的牌面数字恰好相同的结果有2种,
∴抽取的这两张牌的牌面数字恰好相同的概率为=.
21.(6分)一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)
【解答】解:在△ADC中,设AD=x,
∵AD⊥BD,∠ACD=45°,
∴CD=AD=x,
在△ADB中,AD⊥BD,∠ABD=30°,
∴AD=BD•tan30°,
即x=(16+x),
解得:x=8+8,
∴AB=2AD=2×(8)=16,
∴钢索AB的长度约为(16)m.
22.(7分)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:
根据以上信息,回答下列问题:
(1)这60天的日平均气温的中位数为 19.5℃ ,众数为 19℃ ;
(2)求这60天的日平均气温的平均数;
(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.
【解答】解:(1)这60天的日平均气温的中位数为=19.5(℃),众数为19℃,
故答案为:19.5℃,19℃;
(2)这60天的日平均气温的平均数为×(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20(℃);
(3)∵×30=20(天),
∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天.
23.(7分)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.
(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是 1 m/min;
(2)求AB的函数表达式;
(3)求“猫”从起点出发到返回至起点所用的时间.
【解答】解:(1)由图像知:“鼠”6min跑了30m,
∴“鼠”的速度为:30÷6=5(m/min),
“猫”5min跑了30m,
∴“猫”的速度为:30÷5=6(m/min),
∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),
故答案为:1;
(2)设AB的解析式为:y=kx+b,
∵图象经过A(7,30)和B(10,18),
把点A和点B坐标代入函数解析式得:
,
解得:,
∴AB的解析式为:y=﹣4x+58;
(3)令y=0,则﹣4x+58=0,
∴x=14.5,
∵“猫”比“鼠”迟一分钟出发,
∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).
答:“猫”从起点出发到返回至起点所用的时间13.5min.
24.(8分)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.
(1)求证:∠COB=∠A;
(2)若AB=6,CB=4,求线段FD的长.
【解答】(1)证明:取的中点M,连接OM、OF,
∵=2,
∴==,
∴∠COB=∠BOF,
∵∠A=∠COF,
∴∠COB=∠A;
(2)解:连接BF,如图,
∵CD为⊙O的切线,
∴AB⊥CD,
∴∠OBC=∠ABD=90°,
∵∠COB=∠A,
∴△OBC∽△ABD,
∴=,即=,解得BD=8,
在Rt△ABD中,AD===10,
∵AB是⊙O的直径,
∴∠AFB=90°,
∵∠BDF=∠ADB,
∴Rt△DBF∽Rt△DAB,
∴=,即=,解得DF=.
25.(8分)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.
(1)求点B、C的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.
【解答】解:(1)∵y=﹣x2+2x+8,
取x=0,得y=8,
∴C(0,8),
取y=0,得﹣x2+2x+8=0,
解得:x1=﹣2,x2=4,
∴B(4,0);
(2)存在点P,设P(0,y),
∵CC'∥OB,且PC与PO是对应边,
∴,
即:,
解得:y1=16,,
∴P(0,16)或P(0,).
26.(10分)问题提出
(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)
问题解决
(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.
【解答】解:(1)如图1,
过点A作AH⊥CD交CD的延长线于H,
∴∠H=90°,
∵四边形ABCD是平行四边形,
∴CD=AB=8,AB∥CD,
∴∠ADH=∠BAD=45°,
在Rt△ADH中,AD=6,
∴AH=AD•sinA=6×sin45°=3,
∵点E是AD的中点,
∴DE=AD=3,
同理EG=,
∵DF=5,
∴FC=CD﹣DF=3,
∴S四边形ABFE=S▱ABCD﹣S△DEF﹣S△BFC=8×3﹣×5×﹣×3×3=;
(2)存在,如图2,分别延长AE,与CD,交于点K,则四边形ABCK是矩形,
∴AK=BC=1200米,AB=CK=800米,
设AN=x米,则PC=x米,BO=2x米,BN=(800﹣x)米,AM=OC=(1200﹣2x)米,
∴MK=AK﹣AM=1200﹣(1200﹣2x)=2x米,PK=CK﹣CP=(800﹣x)米,
∴S四边形OPMN=S矩形ABCK﹣S△AMN﹣S△BON﹣S△OCP﹣S△PKM
=800×1200﹣x(1200﹣2x)﹣•2x(800﹣x)﹣x(1200﹣2x)﹣•2x(800﹣x)
=4(x﹣350)2+470000,
∴当x=350时,S四边形OPMN最小=470000(平方米),
AM=1200﹣2x=1200﹣2×350=500<900,CP=x=350<600,
∴符合设计要求的四边形OPMN面积的最小值为47000平方米,此时,点N到点A的距离为350米.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/26 7:54:10;用户:柯瑞;邮箱:ainixiaoke00@163.com;学号:500557
2018年陕西省中考数学试卷: 这是一份2018年陕西省中考数学试卷,共1页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2011年陕西省中考数学试卷: 这是一份2011年陕西省中考数学试卷,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2010年陕西省中考数学试卷: 这是一份2010年陕西省中考数学试卷,共6页。试卷主要包含了计算,一个正比例函数的图像过点,将抛物线C等内容,欢迎下载使用。