所属成套资源:新高考数学一轮复习课时过关练习 (含解析)
- 新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第2节 排列与组合 (含解析) 试卷 0 次下载
- 新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第3节 二项式定理 (含解析) 试卷 0 次下载
- 新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第5节 古典概型、概率的基本性质 (含解析) 试卷 0 次下载
- 新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第6节 事件的相互独立性、条件概率与全概率公式 (含解析) 试卷 0 次下载
- 新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第7节 离散型随机变量及其分布列和数字特征 (含解析) 试卷 0 次下载
新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第4节 随机事件、频率与概率 (含解析)
展开这是一份新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第4节 随机事件、频率与概率 (含解析),共15页。试卷主要包含了事件的运算,事件的关系,下列命题正确的是等内容,欢迎下载使用。
第4节 随机事件、频率与概率
考试要求 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.了解两个互斥事件的概率加法公式.
1.概率与频率
一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率fn(A)会逐渐稳定于事件A发生的概率P(A).我们称频率的这个性质为频率的稳定性.因此,我们可以用频率fn(A)估计概率P(A).
2.事件的运算
定义
表示法
图示
并事件
事件A与事件B至少有一个发生,称这个事件为事件A与事件B的并事件(或和事件)
A∪B(或A+B)
交事件
事件A与事件B同时发生,称这样一个事件为事件A与事件B的交事件(或积事件)
A∩B(或AB)
3.事件的关系
定义
表示法
图示
包含关系
若事件A发生,事件B一定发生,称事件B包含事件A(或事件A包含于事件B)
B⊇A(或A⊆B)
互斥事件
如果事件A与事件B不能同时发生,称事件A与事件B互斥(或互不相容)
若A∩B=∅,则A与B互斥
对立事件
如果事件A和事件B在任何一次试验中有且仅有一个发生,称事件A与事件B互为对立,事件A的对立事件记为
若A∩B=∅,且A∪B=Ω,则A与B对立
1.从集合的角度理解互斥事件和对立事件
(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.
(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.
2.概率加法公式的推广
当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
1.思考辨析(在括号内打“√”或“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)若随机事件A发生的概率为P(A),则0≤P(A)≤1.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )
答案 (1)× (2)√ (3)√ (4)×
解析 随机事件的概率是频率的稳定值,频率是概率的近似值,故(1)错.(4)中,甲中奖的概率与乙中奖概率相同.
2.(2021·珠海期末)一个人打靶时连续射击两次,与事件“至少有一次中靶”互斥的事件是( )
A.至多有一次中靶 B.两次都中靶
C.只有一次中靶 D.两次都不中靶
答案 D
解析 “两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.
3.已知随机事件A,B发生的概率满足条件P(A∪B)=,某人猜测事件∩发生,则此人猜测正确的概率为( )
A.1 B. C. D.0
答案 C
解析 ∵事件∩与事件A∪B是对立事件,∴事件∩发生的概率P(∩)=1-P(A∪B)=1-=,则此人猜测正确的概率为.
4.(2020·全国Ⅱ卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )
A.10名 B.18名 C.24名 D.32名
答案 B
解析 由题意,第二天完成积压订单及当日订单的配货的概率不小于0.95,即第二天确保完成新订单1 600份,减去超市每天能完成的1 200份,加上积压的500份,共有1 600-1 200+500=900(份),至少需要志愿者900÷50=18(名).
5.(多选)(2022·烟台模拟)下列命题正确的是( )
A.对立事件一定是互斥事件
B.若A∩B为不可能事件,则P(A∪B)=P(A)+P(B)
C.若事件A,B,C两两互斥,则P(A)+P(B)+P(C)=1
D.事件A,B满足P(A)+P(B)=1,则A,B是对立事件
答案 AB
解析 由对立事件的定义可知A正确;由于A∩B为不可能事件,所以A,B互斥,则P(A∪B)=P(A)+P(B),即B正确;事件A,B,C两两互斥,并不代表A∪B∪C是必然事件,故C不正确;D中,设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件,故D不正确.
6.一只袋子中装有7个红球,3个绿球,从中无放回地任意抽取两次,每次只取一个球,若取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________,至少取得一个红球的概率为________.
答案
解析 由于“取得两个红球”与“取得两个绿球”是互斥事件,则要取得两个同颜色的球,只需两个互斥事件中有一个事件发生即可,因而取得两个同颜色的球的概率P=+=.
记事件A为“至少取得一个红球”,事件B为“取得两个绿球”,事件A与事件B是对立事件,则至少取得一个红球的概率P(A)=1-P(B)=1-=.
考点一 随机事件的关系
1.(多选)若干个人站成排,其中不是互斥事件的是( )
A.“甲站排头”与“乙站排头”
B.“甲站排头”与“乙不站排尾”
C.“甲站排头”与“乙站排尾”
D.“甲不站排头”与“乙不站排尾”
答案 BCD
解析 排头只能有一人,因此“甲站排头”与“乙站排头”互斥,而B,C,D中,甲、乙站位不一定在同一位置,可以同时发生,因此它们都不互斥.故选BCD.
2.在一次随机试验中,彼此互斥的事件A,B,C,D发生的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )
A.A∪B与C是互斥事件,也是对立事件
B.B∪C与D是互斥事件,也是对立事件
C.A∪C与B∪D是互斥事件,但不是对立事件
D.A与B∪C∪D是互斥事件,也是对立事件
答案 D
解析 A中,A∪B与C是互斥事件,但不对立,因为P(A∪B)+P(C)=0.7≠1,故A错误;
B中,B∪C与D是互斥事件,但不对立,因为P(B∪C)+P(D)=0.8≠1,故B错误;
C中,A∪B与C∪D是互斥事件,也是对立事件,因为P(A∪B)+P(C∪D)=1,故C错误;
D中,A与B∪C∪D是互斥事件,也是对立事件,因为P(A)+P(B∪C∪D)=1,故D正确.
3.(多选)口袋里装有1红,2白,3黄共6个除颜色外完全相同的小球,从中取出两个球,事件A=“取出的两个球同色”,B=“取出的两个球中至少有一个黄球”,C=“取出的两个球至少有一个白球”,D=“取出的两个球不同色”,E=“取出的两个球中至多有一个白球”.下列判断正确的是( )
A.A与D为对立事件
B.B与C是互斥事件
C.C与E是对立事件
D.P(C∪E)=1
答案 AD
解析 当取出的两个球为一黄一白时,B与C都发生,B不正确;当取出的两个球中恰有一个白球时,事件C与E都发生,C不正确;显然A与D是对立事件,A正确;C∪E为必然事件,P(C∪E)=1,D正确.
感悟提升 1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.
2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.
考点二 随机事件的频率与概率
例1 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高
气温
[10,
15)
[15,
20)
[20,
25)
[25,
30)
[30,
35)
[35,
40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
解 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为=0.6,
所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温低于20,则Y=200×6+(450-200)×2-450×4=-100;
若最高气温位于区间[20,25),则Y=300×6+(450-300)×2-450×4=300;
若最高气温不低于25,则Y=450×(6-4)=900,
所以,利润Y的所有可能值为-100,300,900.
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8.
因此Y大于零的概率的估计值为0.8.
感悟提升 1.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.
2.利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.
训练1 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元、50元、20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级
A
B
C
D
频数
40
20
20
20
乙分厂产品等级的频数分布表
等级
A
B
C
D
频数
28
17
34
21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
解 (1)由试加工产品等级的频数分布表知,
甲分厂加工出来的一件产品为A级品的概率的估计值为=0.4;
乙分厂加工出来的一件产品为A级品的概率的估计值为=0.28.
(2)由数据知甲分厂加工出来的100件产品利润的频数分布表为
利润
65
25
-5
-75
频数
40
20
20
20
因此甲分厂加工出来的100件产品的平均利润为
=15.
由数据知乙分厂加工出来的100件产品利润的频数分布表为
利润
70
30
0
-70
频数
28
17
34
21
因此乙分厂加工出来的100件产品的平均利润为
=10.
比较甲、乙两分厂加工的产品的平均利润,厂家应选甲分厂承接加工业务.
考点三 互斥事件与对立事件的概率
例2 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)1张奖券的中奖概率;
(2)1张奖券不中特等奖且不中一等奖的概率.
解 (1)设“1张奖券中奖”为事件M,则M=A∪B∪C.
∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==.
故1张奖券中奖的概率为.
(2)设“1张奖券既不中特等奖也不中一等奖”为事件N,则事件N与事件“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-[P(A)+P(B)]=1-=.
故1张奖券既不中特等奖也不中一等奖的概率为.
感悟提升 1.求解本题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;二是间接求法,先求此事件的对立事件的概率,再用公式P(A)=1-P()求出所求概率,特别是“至多”“至少”型题目,用间接求法比较简便.
训练2 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队等候的概率;
(2)至少3人排队等候的概率.
解 记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.
(1)记“至多2人排队等候”为事件G,则G=A∪B∪C,
所以P(G)=P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)法一 记“至少3人排队等候”为事件H,
则H=D∪E∪F,
所以P(H)=P(D∪E∪F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.
法二 记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.
1.下列说法正确的是( )
A.甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场
B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈
C.随机试验的频率与概率相等
D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%
答案 D
解析 由概率的意义知D正确.
2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是( )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
答案 A
解析 由题意知“2张全是移动卡”的对立事件是“至多有一张移动卡”,又1-=,故“至多有一张移动卡”的概率是.
3.(2022·太原模拟)已知随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,则P()=( )
A.0.5 B.0.1 C.0.7 D.0.8
答案 A
解析 ∵随机事件A和B互斥,且P(A∪B)=0.7,P(B)=0.2,∴P(A)=P(A∪B)-P(B)=0.7-0.2=0.5,∴P()=1-P(A)=1-0.5=0.5.
4.(多选)(2021·武汉调研)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,下面结论正确的是( )
A.甲不输的概率 B.乙不输的概率
C.乙获胜的概率 D.乙输的概率
答案 ABD
解析 因为甲、乙两人下成和棋的概率是,甲获胜的概率是,所以甲不输的概率+=,故A正确;
所以乙不输的概率1-=,故B正确;
所以乙获胜的概率1--=,故C错误;
所以乙输的概率即为甲获胜的概率是,故D正确,故选ABD.
5.(多选)(2022·重庆诊断)将一枚骰子向上抛掷一次,设事件A=“向上的一面出现奇数点”,事件B=“向上的一面出现的点数不超过2”,事件C=“向上的一面出现的点数不小于4”,则下列说法中正确的有( )
A.B=∅
B.C=“向上的一面出现的点数大于3”
C.A+C=“向上的一面出现的点数不小于3”
D.=“向上的一面出现的点数为2”
答案 BC
解析 由题意知事件A包含的样本点:向上的一面出现的点数为1,3,5;
事件B包含的样本点:向上的一面出现的点数为1,2;
事件C包含的样本点:向上的一面出现的点数为4,5,6.
所以B=“向上的一面出现的点数为2”,故A错误;
C=“向上的一面出现的点数为4或5或6”,故B正确;
A+C=“向上的一面出现的点数为3或4或5或6”,故C正确;
=Ω,故D错误,故选BC.
6.(多选)下列说法正确的是( )
A.若事件A与B互斥,则A∪B是必然事件
B.《西游记》《三国演义》《水浒传》《红楼梦》是我国四大名著.若在这四大名著中,甲、乙、丙、丁分别任取一本进行阅读,设事件E=“甲取到《红楼梦》”,事件F=“乙取到《红楼梦》”,则E与F是互斥但不对立事件
C.掷一枚骰子,记录其向上的点数,记事件A=“向上的点数不大于5”,事件B=“向上的点数为质数”,则B⊆A
D.10个产品中有2个次品,从中抽取一个产品检查其质量,则样本空间含有2个样本点
答案 BCD
解析 对于A,事件A与B互斥时,A∪B不一定是必然事件,故A错误;
对于B,事件E与F不会同时发生,所以E与F是互斥事件,但除了事件E与F之外还有“丙取到红楼梦”“丁取到红楼梦”,所以E与F不是对立事件,故E与F是互斥但不对立事件,故B正确;
对于C,事件A={1,2,3,4,5},事件B={2,3,5},所以B包含于A,故C正确;
对于D,样本空间Ω={正品,次品},含有2个样本点,故D正确.
7.我国西部一个地区的年降水量在下列区间内的概率如下表所示:
年降水量(mm)
(100,150)
(150,200)
(200,250)
(250,300)
概率
0.21
0.16
0.13
0.12
则年降水量在(200,300)(mm)范围内的概率是________.
答案 0.25
解析 设年降水量在(200,300),(200,250),(250,300)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,所以P(A)=P(B)+P(C)=0.13+0.12=0.25.
8.若事件A与B是互斥事件,且事件A∪B发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为________.
答案 0.16
解析 设P(A)=x,则P(B)=3x,所以P(A∪B)=P(A)+P(B)=x+3x=0.64,所以P(A)=x=0.16.
9.某城市2022年的空气质量状况如下表所示:
污染指数T
30
60
100
110
130
140
概率P
其中污染指数T≤50时,空气质量为优;50<T≤100时,空气质量为良;100<T≤150时,空气质量为轻微污染,则该城市2022年空气质量达到良或优的概率为________.
答案
解析 由题意可知2022年空气质量达到良或优的概率P=++=.
10.盒子里有6个红球、4个白球,现从中任取3个球,设事件A={3个球中有1个红球、2个白球},事件B={3个球中有2个红球、1个白球},事件C={3个球中至少有1个红球},事件D={3个球中既有红球又有白球}.
(1)事件D与A,B是什么样的运算关系?
(2)事件C与A的积事件是什么事件?
解 (1)对于事件D,可能的结果为1个红球、2个白球或2个红球、1个白球,故D=A+B.
(2)对于事件C,可能的结果为1个红球、2个白球或2个红球,1个白球或3个红球,故CA=A.
11.电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型
第一
类
第二
类
第三
类
第四
类
第五
类
第六
类
电影部数
140
50
300
200
800
510
好评率
0.4
0.2
0.15
0.25
0.2
0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(2)随机选取1部电影,估计这部电影没有获得好评的概率;
(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大(只需写出结论)?
解 (1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2 000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率为=0.025.
(2)由题意知,样本中获得好评的电影部数是
140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1
=56+10+45+50+160+51
=372.
故所求概率估计为1-=0.814.
(3)增加第五类电影的好评率,减少第二类电影的好评率.
12.(多选)(2022·海口模拟)小张上班从家到公司开车有两条线路,所需时间(分钟)随交通堵塞状况有所变化,其概率分布如表所示:
所需时间(分钟)
30
40
50
60
线路一
0.5
0.2
0.2
0.1
线路二
0.3
0.5
0.1
0.1
则下列说法正确的是( )
A.任选一条线路,“所需时间小于50分钟”与“所需时间为60分钟”是对立事件
B.从所需的平均时间看,线路一比线路二更节省时间
C.如果要求在45分钟以内从家赶到公司,小张应该走线路一
D.若小张上、下班走不同线路,则所需时间之和大于100分钟的概率为0.04
答案 BD
解析 “所需时间小于50分钟”与“所需时间为60分钟”是互斥而不对立事件,A错误;
线路一所需的平均时间为30×0.5+40×0.2+50×0.2+60×0.1=39分钟,线路二所需的平均时间为30×0.3+40×0.5+50×0.1+60×0.1=40分钟,所以B正确;
线路一所需时间小于45分钟概率为0.7,线路二所需时间小于45分钟概率为0.8,小张应选线路二,故C错误;
所需时间之和大于100分钟则线路一,线路二的时间可以为(50,60),(60,50)和(60,60)三种情况,概率为0.2×0.1+0.1×0.1+0.1×0.1=0.04,故D正确.故选BD.
13.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33名成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一名成员,则他至少参加2个小组的概率为________,他至多参加2个小组的概率为________.
答案
解析 记“恰好参加2个小组”为事件A,“恰好参加3个小组”为事件B,随机选取一名成员,恰好参加2个小组的概率P(A)=++=,恰好参加3个小组的概率P(B)==,则至少参加2个小组的概率为P(A)+P(B)=+=,至多参加2个小组的概率为1-P(B)=1-=.
14.甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)写出甲、乙抽到牌的所有情况;
(2)若甲抽到红桃3,则乙抽到的牌的数字比3大的概率是多少?
(3)甲、乙约定,若甲抽到的牌的数字比乙的大,则甲胜;否则乙胜,你认为此游戏是否公平?为什么?
解 (1)分别用2,3,4,4′表示红桃2,红桃3,红桃4,方片4,则甲、乙抽到牌的所有情况为(2,3),(2,4),(2,4′),(3,2),(3,4),(3,4′),(4,2),(4,3),(4,4′),(4′,2),(4′,3),(4′,4),共12种不同的情况.
(2)甲抽到红桃3,乙抽到的只能是红桃2,红桃4,方片4,因此乙抽到牌的数字比3大的概率是.
(3)甲抽到的牌的数字比乙的大,有(3,2),(4,2),(4,3),(4′,2),(4′,3),共5种情况,因此甲胜的概率为,乙胜的概率为.
因此<,所以此游戏不公平.
相关试卷
这是一份新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布高考重点突破课四 概率与统计 (含解析),共24页。试卷主要包含了012×2+0,频率分布直方图的性质,484 4>6,061>3,5元,3-\f×24等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第7节 离散型随机变量及其分布列和数字特征 (含解析),共20页。试卷主要包含了离散型随机变量的分布列,离散型随机变量的分布列的性质,离散型随机变量的均值与方差,均值与方差的性质,8时,实数a的取值范围是,已知随机变量ξ的分布列为等内容,欢迎下载使用。
这是一份新高考数学一轮复习课时过关练习第10章 计数原理、概率、随机变量及其分布第6节 事件的相互独立性、条件概率与全概率公式 (含解析),共15页。试卷主要包含了了解两个事件相互独立的含义,条件概率,全概率公式等内容,欢迎下载使用。