|试卷下载
搜索
    上传资料 赚现金
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      考点06 作辅助线构造全等三角形的七大方法-原卷版.docx
    • 解析
      考点06 作辅助线构造全等三角形的七大方法-解析版.docx
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)01
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)02
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)03
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)01
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)02
    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)03
    还剩12页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)

    展开
    这是一份考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版),文件包含考点06作辅助线构造全等三角形的七大方法-原卷版docx、考点06作辅助线构造全等三角形的七大方法-解析版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。

    考点06 作辅助线构造全等三角形的7大方法


    1 倍长中线构造全等三角形
    【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.
    【常见模型】



    2 截长补短构造全等三角形
    【模型分析】截长补短的方法适用于求证线段的和差倍分关系。截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
    【模型图示】
    (1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
    例:如图,求证BE+DC=AD

    方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
    (2) 补短:将短线段延长,证与长线段相等。

    3 半角全等模型
    【模型分析】过等腰三角形顶点 两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
    【常见模型】

    常见的图形为正方形,正三角形,等腰直角三角形等,解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。半角模型(题中出现角度之间的半角关系)利用旋转——证全等——得到相关结论.
    4 平行线法构造全等三角形
    若题设中含有中点可以试过中点作平行线或中位线,对Rt△,有时可作出斜边的中线。
    5 作垂线法构造全等三角形
    在处理几何问题时,遇到无法直接得出关系的线段时,看到“正方形”,“等腰直角三角形”“旋转90°角”等字眼,或者角平分线、垂直平分线等,可以尝试通过作垂线的方式来构造两个全等三角形。
    6 补全图形法构造全等三角形
    当题目中出现等腰三角形、等腰直角三角形、垂直平分线等,可采用补全图形的方法构造全等三角形,目的是为了补全图形,利用特殊的性质解决问题。
    7 旋转构造全等三角形
    若题设中含有垂线、角的平分线等条件的,可以试用轴对称性质,沿轴翻转图形来构造全等三角形。

    考点1 倍长中线构造全等三角形
    考点2 截长补短构造全等三角形
    考点3 半角旋转构造全等三角形
    考点4 平行线法构造全等三角形
    考点5 作垂线法构造全等三角形
    考点6 补全图形法构造全等三角形
    考点7 旋转构造全等三角形

    考点1 倍长中线构造全等三角形
    1.(2023秋·全国·八年级专题练习)【阅读理解】数学兴趣小组活动时,老师提出如下问题:如图1,在中,若,,求边上的中线的取值范围.小明提出了如下解决方法,延长线段至点E,使,连接.请根据小明的方法回答下列问题.

    (1)由已知和作图能得到的理由是____________.
    A.        B.        C.        D.
    (2)探究得出的取值范围___________.
    A.        B.        C.        D.
    【问题解决】
    (3)如图2,在中,,,是的中线,求证:.
    【答案】(1)B
    (2)C
    (3)见解析

    【分析】(1)根据,,推出和全等即可,据此即可判定;
    (2)根据全等得出,,由三角形三边关系定理得出,求出即可;
    (3)延长到F,使,连接,证明, 得出,,证明,得出,证明即可.
    【详解】(1)解:是中线,

    在与中,


    故选:B;
    (2)解:由知:,
    ,,
    由三角形三边之间的关系可得:,
    即,
    解得:,
    故选:C;
    (3)证明:延长到F,使,连接,如图所示:

    是中线,

    在与中,

    ,,
    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,,
    ∴,
    ∵在和中,
    ∴,
    ∴,
    ∴.
    【点睛】本题属于三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,平行线的判断和性质,全等三角形的性质和判定等知识点,解题的关键是作出辅助线,熟练掌握相关的性质和定理.
    2.(2022秋·甘肃庆阳·八年级校考期末)小明遇到这样一个问题,如图1,中,,,点为的中点,求的取值 范围.小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长到,使,连接,构造,经过推理和计算使问题得到解决.请回答:

    (1)小明证明用到的判定定理是:(用字母表示);
    (2)的取值范围是;
    (3)小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形模型的构造.参考小明思考问题的方法,解决问题:如图3,在中,为边上的中线,且平分,求证:.
    【答案】(1)
    (2)
    (3)证明见解析

    【分析】(1)根据定理解答;
    (2)根据全等三角形的性质得到,根据三角形的三边关系计算,得到答案;
    (3)仿照(1)的作法,根据等腰三角形的判定定理证明结论.
    【详解】(1)解:在和中,


    小明证明用到的判定定理是,
    故答案为:;
    (2)解:,

    在中,,


    (3)证明:延长到点E,使,连接,

    在和中,


    ,,
    平分,




    【点睛】本题考查的是全等三角形的判定与性质、等腰三角形的判定与性质、三角形三边关系,掌握三角形全等的判定定理和性质定理是解题的关键.
    3.(2023秋·甘肃定西·八年级校考期末)(1)阅读理解:如图1,在中,若,.求边上的中线的取值范围,小聪同学是这样思考的:延长至,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线的取值范围是___________;
    (2)问题解决:如图2,在中,点是的中点,.交于点,交于点.求证:;
    (3)问题拓展:如图3,在中,点是的中点,分别以为直角边向外作和,其中,,,连接,请你探索与的数量与位置关系,并直接写出与的关系.

    【答案】(1),;(2)见解析;(3),
    【分析】(1)通过证明,得到,在中,根据三角形三边关系可得:,即,从而可得到中线的取值范围;
    (2)延长至点,使,连接,通过证明,得到,由,,得到,在中,由三角形的三边关系得:;
    (3)延长于,使得,连接,延长交于,证明得到,证明得到,,在通过三角形内角和进行角度的转化即可得到.
    【详解】(1)解:如图1,延长至,使,连接,
    为边上的中线,

    在和中,



    在中,根据三角形三边关系可得:,
    即,



    故答案为:,;
    (2)证明:如图2中,延长至点,使,连接,

    点是的中点,

    在和中,

    ∴,
    ∴,
    ∵,,
    ∴,
    在中,由三角形的三边关系得:,
    ∴;
    (3)解:结论:,,
    如图3,延长于,使得,连接,延长交于,

    点是的中点,

    在和中,



    ,,



    在和中,


    ,,

    ,  


    即.
    【点睛】本题考查了全等三角形的判定与性质,三角形的三边关系,三角形的内角和定理,熟练掌握全等三家形的判定与性质,三角形的三边关系以及三角形内角和定理,作出恰当的辅助线是解题的关键.
    4.(2023·全国·八年级专题练习)【观察发现】如图①,△ABC中,AB=7,AC=5,点D为BC的中点,求AD的取值范围.
    小明的解法如下:延长AD到点E,使DE=AD,连接CE.
    在△ABD与△ECD中
    ∴△ABD≅△ECD(SAS)
    ∴AB=   .
    又∵在△AEC中EC﹣AC<AE<EC+AC,而AB=EC=7,AC=5,
    ∴   <AE<   .
    又∵AE=2AD.
    ∴   <AD<   .
    【探索应用】如图②,ABCD,AB=25,CD=8,点E为BC的中点,∠DFE=∠BAE,求DF的长为    .(直接写答案)
    【应用拓展】如图③,∠BAC=60°,∠CDE=120°,AB=AC,DC=DE,连接BE,P为BE的中点,求证:AP⊥DP.

    【答案】观察发现:EC,2,12,1,6;探索应用:17;应用拓展:见解析
    【分析】观察发现:由“SAS”可证△ABD≌△ECD,可得AB=EC,由三角形的三边关系可求解;
    探索应用:由“SAS”可证△ABE≌△HCE,可得AB=CH=25,即可求解;
    应用拓展:由“SAS”可证△BPA≌△EPF,可得AB=FE,∠PBA=∠PEF,由“SAS”可证△ACD≌△FED,可得AD=FD,由等腰三角形的性质可得结论.
    【详解】观察发现
    解:如图①,延长AD到点E,使DE=AD,连接CE,
    在△ABD与△ECD中,

    ∴△ABD≌△ECD(SAS),
    ∴AB=EC,
    在△AEC中,EC-AC<AE<EC+AC,而AB=EC=7,AC=5,
    ∴2<AE<12.
    又∵AE=2AD,
    ∴1<AD<6,
    故答案为:EC,2,12,1,6;
    探索应用
    解:如图2,延长AE,CD交于H,

    ∵点E是BC的中点,
    ∴BE=CE,
    ∵CD∥AB,
    ∴∠ABE=∠ECH,∠H=∠BAE,
    ∴△ABE≌△HCE(AAS),
    ∴AB=CH=25,
    ∴DH=CH-CD=17,
    ∵∠DFE=∠BAE,
    ∴∠H=∠DFE,
    ∴DF=DH=17,
    故答案为:17;
    应用拓展
    证明:如图2,延长AP到点F,使PF=AP,连接DF,EF,AD,

    在△BPA与△EPF中,

    ∴△BPA≌△EPF(SAS),
    ∴AB=FE,∠PBA=∠PEF,
    ∵AC=BC,
    ∴AC=FE,
    在四边形BADE中,∠BAD+∠ADE+∠DEB+∠EBA=360°,
    ∵∠BAC=60°,∠CDE=120°,
    ∴∠CAD+∠ADC+∠DEB+∠EBA=180°.
    ∵∠CAD+∠ADC+∠ACD=180°,
    ∴∠ACD=∠DEB+∠EBA,
    ∴∠ACD=∠FED,
    在△ACD与△FED中,

    ∴△ACD≌△FED(SAS),
    ∴AD=FD,
    ∵AP=FP,
    ∴AP⊥DP.
    【点睛】本题是三角形综合题,考查了全等三角形的性质、等腰三角形的性质等知识,作出恰当的辅助线,证得三角形全等是解答此题的关键.

    考点2 截长补短构造全等三角形
    5.(2023秋·全国·八年级专题练习)已知:如图,在中,,、分别为、上的点,且、交于点.若、为的角平分线.

    (1)求的度数;
    (2)若,,求的长.
    【答案】(1)
    (2)10

    【分析】(1)由题意,根据,即可解决问题;
    (2)在上截取,连接.只要证明,推出,,再证明,推出,由此即可解决问题.
    【详解】(1)解:、分别为的角平分线,
    ,,



    (2)解:在上截取,连接.

    、分别为的角平分线
    ,,


    在和中,




    在和中,




    【点睛】本题考查等腰三角形的判定和性质、全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线构造全等三角形解决问题.
    6.(2023·广东肇庆·校考一模)课堂上,老师提出了这样一个问题:

    如图1,在中,平分交于点D,且,求证:,小明的方法是:如图2,在上截取,使,连接,构造全等三角形来证明.
    (1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段构造全等三角形进行证明.辅助线的画法是:延长至F,使=______,连接请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;
    (2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:
    如图3,点D在的内部,分别平分,且.求证:.请你解答小芸提出的这个问题(书写证明过程);
    (3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:
    如果在中,,点D在边上,,那么平分小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.
    【答案】(1),证明见解析
    (2)见解析
    (3)见解析

    【分析】(1)延长至F,使,连接,根据三角形的外角性质得到,则可利用证明,根据全等三角形的性质可证明结论;
    (2)在上截取,使,连接,则可利用证明,根据全等三角形的性质即可证明结论;
    (3)延长至G,使,连接,则可利用证明,根据全等三角形的性质、角平分线的定义即可证明结论.
    【详解】(1)证明:(1)如图1,延长至F,使,连接,则,
    ∴,
    ∵平分
    ∴,  
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴.
    故答案为:.

    (2)证明:如图3,在上截取,使,连接

    ∵分别平分,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    ∴,
    ∴,  
    ∴,
    ∴,
    ∴.
    (3)证明:如图4:延长至G,使,连接,则,
    ∴,
    ∵,
    ∴,
    ∵,  
    ∴,
    ∴,
    ∴,
    ∴,
    在和中,


    ∴,即平分.

    【点睛】本题主要考查的是三角形全等的判定和性质、角平分线的定义等知识点,灵活运用全等三角形的判定定理和性质定理是解答本题的关键.
    7.(2023秋·全国·八年级专题练习)在中,,如图①,当,为的平分线时,在上截取,连接DE,易证.

    (1)如图②,当,为的角平分线时,线段,,之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.
    (2)如图③,当,为的外角平分线时,线段,,之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.
    【答案】(1);
    (2),证明见解析

    【分析】(1)首先在上截取,连接,易证,则可得,,又由,,所以,即,易证进而求解;
    (2)首先在的延长线上截取,连接,易证,可得,,又由,易证,则可求解.
    【详解】(1)解:.
    理由为:
    在上截取,连接,如图②所示,

    ∵为的平分线,
    ∴,
    在和中,

    ∴,
    ∴,.
    ∵,
    ∴.
    又∵,
    ∴,
    ∴,
    则;
    (2)解:.
    理由为:
    在上截取,连接,如图③所示,

    ∵为的平分线,
    ∴,
    在和中,

    ∴,
    ∴,,
    ∴.
    ∵,
    ∴.
    又∵,
    ∴,
    ∴,
    则.
    【点睛】本题考查三角形综合题、全等三角形的判定与性质、等腰三角形的判定、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
    8.(2023·全国·八年级假期作业)如图,在△ABC中,∠A=100°,AB=AC,BE是∠ABC的平分线,求证:AE+BE=BC.

    【答案】见解析
    【分析】延长BE到F,使BF=BC,连接FC,由AB=AC,∠A=100°,得到∠ABC=∠ACB=40°,由于BE平分∠ABC,于是得到∠ABE=∠EBC=20°,通过△FCE≌△F′CE,得到EF=EF′,∠EF′C=∠F=80°,证得△ABE≌△F′BE,于是得到AE=EF′,于是得到结论.
    【详解】解:如图,延长BE到F,使BF=BC,连接FC,

    ∵AB=AC,∠A=100°,
    ∴∠ABC=∠ACB=40°,
    ∵BE平分∠ABC,
    ∴∠ABE=∠EBC=20°,
    ∵BF=BC,
    ∴∠F=∠BCF=80°,
    ∴∠FCE=∠ACB=40°,
    在BC上取CF′=CF,连接EF′,
    在△FCE与△F′CE中,,
    ∴△FCE≌△F′CE(SAS),
    ∴EF=EF′,∠EF′C=∠F=80°,
    ∴∠BF′E=100°,
    ∴∠A=∠BF′E,
    在△ABE与△F′BE中,,
    ∴△ABE≌△F′BE(AAS),
    ∴AE=EF′,
    ∴AE=EF,
    ∴AE+BE=BE+EF=BC.
    【点睛】本题考查了全等三角形的判定和性质,角平分线的性质,等腰三角形的性质,作辅助线构建全等三角形是解题的关键.

    考点3 半角旋转构造全等三角形
    9.(2022秋·江苏南通·八年级校考阶段练习)(1)如图①,在四边形中,,E,F分别是边上的点,且.请直接写出线段之间的数量关系:;
    (2)如图②,在四边形中,,E,F分别是边上的点,且,(1)中的结论是否仍然成立?请写出证明过程;
    (3)在四边形中,,E,F分别是边所在直线上的点,且.请直接写出线段之间的数量关系:.

    【答案】(1);(2)(1)中的结论仍然成立,理由见解析;(3) 或 或
    【分析】(1)如图1,延长到G,使,连接,即可证明,可得,再证明,可得,即可解题;
    (2)如图2,同理可得:;
    (3)如图3,作辅助线,构建,同理证明和.可得新的结论:;如图4,作辅助线,同理证明和,可得新结论;
    【详解】解:(1)如图1,延长到G,使,连接.
    在与中,

    ∴.
    ∴,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    ∵.
    ∴;

    (2)(1)中的结论仍然成立.
    理由如下:如图2,延长到G,使,连接.
    ∵,
    ∴,
    在与中,

    ∴.
    ∴,
    ∴.
    ∴.
    又∵,
    ∴.
    ∴.
    ∵.
    ∴;

    (3)图2中,成立,
    图3中,,理由如下:

    在上截取,使,连接.
    ∵,
    ∴.
    在与中,

    ∴.
    ∴.
    ∴.
    ∴.
    在和中,

    ∴.
    ∴,
    ∵,
    ∴.
    图4中,,理由如下:

    在上截取,使,连接,
    ∵,
    ∴,
    在和中,

    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    在和 中,

    ∴,
    ∴,
    ∴;
    综上所述,线段 之间的数量关系为: 或 或,
    故答案为: 或 或.
    【点睛】本题是三角形的综合题,考查了全等三角形的判定与性质、平角的定义等知识,本题综合性强,正确作出辅助线构造全等三角形是解题的关键,属于中考常考题型.
    10.(2023秋·全国·八年级专题练习)已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.

    思路分析:
    (1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,
    ∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,
    ∠E'AF=   度,……
    根据定理,可证:△AEF≌△AE'F.
    ∴EF=BE+DF.
    类比探究:
    (2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;
    拓展应用:
    (3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.
    【答案】(1)45
    (2)DF=BE+EF,证明见解析
    (3)2

    【分析】(1)把绕点逆时针旋转至,则、、在一条直线上,,再证△,得,进而得出结论;
    (2)将绕点逆时针旋转得到,由旋转的性质得,再证△,得,进而得出结论;
    (3)将绕点逆时针旋转得到,连接,则,得,因此,同(2)得△,则,,得、、围成的三角形面积,即可求解.
    【详解】(1)解:如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,
    ∴把△ABE绕点A逆时针旋转90°至,

    则F、D、在一条直线上,≌△ABE,
    ∴=BE,∠=∠BAE,=AE,
    ∴∠=∠EAD+∠=∠EAD+∠BAE=∠BAD=90°,
    则∠=∠﹣∠EAF=45°,
    ∴∠EAF=∠,
    ∴△AEF≌△(SAS),
    ∴,
    ∵,
    ∴EF=BE+DF.
    故答案为:45;
    (2)解:DF=BE+EF    理由如下:
    将△ABE绕点A逆时针旋转90°得到△,

    ∴△≌△ABE,
    ∴AE=,BE=,∠=∠BAE,
    ∴∠=∠BAE+∠=∠+∠=∠BAD=90°,
    则∠=∠﹣∠EAF=45°,
    ∴∠=∠EAF=45°,
    在△AEF和△中,

    ∴△AEF≌△(SAS),
    ∴,
    ∵,
    ∴DF=BE+EF;
    (3)解:将△ABD绕点A逆时针旋转得到△,连接,

    则△≌△ABD,
    ∴CD'=BD,
    ∴,
    同(2)得:△ADE≌△(SAS),
    ∴,,
    ∴BD、DE、EC围成的三角形面积为、、EC围成的三角形面积.
    【点睛】本题是四边形综合题,考查了全等三角形的判定与性质、旋转的性质、正方形的性质以及四边形和三角形面积等知识,本题综合性强,解此题的关键是根据旋转的启发正确作出辅助线得出全等三角形,属于中考常考题型.
    11.(2023春·全国·八年级专题练习)如图,已知在△ABC中,AB=AC,D、E是BC边上的点,将△ABD绕点A旋转,得到△AC,连接E.

    (1)当∠BAC=120°,∠DAE=60°时,求证:DE=E;
    (2)当DE=E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.
    (3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,△EC是等腰直角三角形?(直接写出结论,不必证明)
    【答案】(1)见解析
    (2)∠DAE=∠BAC,理由见解析
    (3)DE=BD

    【分析】(1)根据旋转的性质可得AD=A,∠CA=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠AE,再利用“边角边”证明△ADE和△AE全等,根据全等三角形对应边相等证明即可;
    (2)根据旋转的性质可得AD=A,再利用“边边边”证明△ADE和△AE全等,然后根据全等三角形对应角相等求出∠DAE=∠AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;
    (3)求出∠CE=90°,然后根据等腰直角三角形斜边等于直角边的倍可得E=C,再根据旋转的性质解答即可.
    【详解】(1)证明:∵△ABD绕点A旋转得到△AC,
    ∴AD=A,∠CA=∠BAD,
    ∵∠BAC=120°,∠DAE=60°,
    ∴∠AE=∠CA+∠CAE=∠BAD+∠CAE=∠BAC﹣∠DAE=120°﹣60°=60°,
    ∴∠DAE=∠AE,
    在△ADE和△AE中,
    ∵,
    ∴△ADE≌△AE(SAS),
    ∴DE=E;
    (2)解:∠DAE=∠BAC.
    理由如下:在△ADE和△AE中,

    ∴△ADE≌△AD′E(SSS),
    ∴∠DAE=∠AE,
    ∴∠BAD+∠CAE=∠CAD′+∠CAE=∠D′AE=∠DAE,
    ∴∠DAE=∠BAC;
    (3)解:∵∠BAC=90°,AB=AC,
    ∴∠B=∠ACB=∠AC=45°,
    ∴∠CE=45°+45°=90°,
    ∵△EC是等腰直角三角形,
    ∴E=C,
    由(2)DE=E,
    ∵△ABD绕点A旋转得到△AC,
    ∴BD=,
    ∴DE=BD.
    【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.
    12.(2023秋·全国·八年级专题练习)问题情境
    在等边△ABC的两边AB,AC上分别有两点M,N,点D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.

    特例探究
    如图1,当DM=DN时,
    (1)∠MDB=   度;
    (2)MN与BM,NC之间的数量关系为   ;
    归纳证明
    (3)如图2,当DM≠DN时,在NC的延长线上取点E,使CE=BM,连接DE,猜想MN与BM,NC之间的数量关系,并加以证明.
    拓展应用
    (4)△AMN的周长与△ABC的周长的比为   .
    【答案】(1)30;(2)MN=BM+NC;(3)MN=BM+NC,证明见解析;(4)
    【分析】(1)先证明△MDN是等边三角形,则MN=DM=DN,再证明Rt△DBM≌Rt△DCN(HL),得∠BDM=∠CDN=30°;
    (2)由(1)得DM=2BM,可得结论MN=2BM=BM+NC;
    归纳证明:先证△DBM≌△DCE(HL),得DM=DE,∠BDM=∠CDE,再证△MDN≌△EDN(SAS),得MN=NE,可得结论MN=BM+CN;
    拓展应用:
    (3)首先根据题意利用SAS证明△DBM≌△DCE,然后证明△MDN≌△EDN,根据全等三角形对应相等通过线段之间的转化即可得到MN=BM+NC;
    (4)由(3)得到MN=BM+NC,则△AMN的周长=2AB,△ABC的周长=3AB,即可得出结论.
    【详解】特例探究:
    解:(1)∵DM=DN,∠MDN=60°,
    ∴△MDN是等边三角形,
    ∴MN=DM=DN,
    ∵∠BDC=120°,BD=DC,
    ∴∠DBC=∠DCB=30°,
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∴∠DBM=∠DCN=90°,
    ∵BD=CD,DM=DN,
    ∴Rt△DBM≌Rt△DCN(HL),
    ∴∠MDB=∠NDC=30°,
    故答案为:30;
    (2)由(1)得:DM=2BM,DM=MN,Rt△DBM≌Rt△DCN(HL),
    ∴BM=CN,
    ∴DM=MN=2BM=BM+NC,
    即MN=BM+NC;
    归纳证明
    (3)解:猜想:MN=BM+NC,证明如下:
    ∵△ABC是等边三角形,
    ∴∠ABC=∠ACB=60°,
    ∵BD=CD,∠BDC=120°,
    ∴∠DBC=∠DCB=30°,
    ∴∠MBD=∠NCD=90°.
    ∴∠MBD=∠ECD=90°,
    又∵BD=CD,BM=CE,
    ∴△DBM≌△DCE(SAS),
    ∴DM=DE,∠MDB=∠EDC,
    ∵∠MDN=60°,∠BDC=120°,
    ∴∠MDB+∠NDC=60°,
    ∴∠EDN=∠NDC+∠EDC=∠MDB+∠NDC=60°,
    ∴∠EDN=∠MDN,
    又∵DN=DN,
    ∴△MDN≌△EDN(SAS),
    ∴MN=EN=EC+NC=BM+NC;
    拓展应用
    (4)解:由(1)(2)得:MN=BM+NC,
    ∴△AMN的周长=AM+MN+AN=AM+BM+NC+AN=AB+AC=2AB,
    ∵△ABC是等边三角形,
    ∴AB=BC=AC,
    ∴△ABC的周长=3AB,
    ∴△AMN的周长与△ABC的周长的比为=,
    故答案为:.
    【点睛】此题考查了等边三角形的性质的,全等三角形的判定和性质等知识,解题的关键是熟练掌握等边三角形的性质,全等三角形的判定和性质.

    考点4 作平行线法构造全等三角形

    13.(2023·全国·八年级假期作业) P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.
    (1)证明:PD=DQ.
    (2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.

    【答案】(1)证明见解析;(2)DE=3.
    【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;
    (2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DEAC,即可得出结果.
    【详解】(1)如图1所示,点P作PF∥BC交AC于点F.
    ∵△ABC是等边三角形,
    ∴△APF也是等边三角形,AP=PF=AF=CQ.
    ∵PF∥BC,∴∠PFD=∠DCQ.
    在△PDF和△QDC中,,
    ∴△PDF≌△QDC(AAS),
    ∴PD=DQ;
    (2)如图2所示,过P作PF∥BC交AC于F.
    ∵PF∥BC,△ABC是等边三角形,
    ∴∠PFD=∠QCD,△APF是等边三角形,
    ∴AP=PF=AF.
    ∵PE⊥AC,∴AE=EF.
    ∵AP=PF,AP=CQ,∴PF=CQ.
    在△PFD和△QCD中,,
    ∴△PFD≌△QCD(AAS),
    ∴FD=CD.
    ∵AE=EF,∴EF+FD=AE+CD,
    ∴AE+CD=DEAC.
    ∵AC=6,∴DE=3.
      
    【点睛】本题考查等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质,解题的关键是掌握等边三角形的判定与性质、全等三角形的判定(AAS)与性质、平行线的性质,熟练掌握等边三角形的性质.
    14.(2022秋·八年级课时练习)如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,

    (1)求证:DP=DQ;
    (2)过P作PE⊥AC于E,若BC=4,求DE的长.
    【答案】(1)详见解析
    (2)ED=2

    【分析】(1)过P作PF∥BQ,可得△APF为等边三角形 ,所以AP=PF,再证△DCQ≌△DFP,即可得PD=DQ;
    (2)根据等腰三角形三线合一的性质可得AE=EF,根据全等三角形对应边相等可得FD=CD,然后求出2DE=AC,代入数据进行计算即可得解.
    【详解】(1)证明:如图,过点P作PF∥BC,则∠DPF=∠Q,

    ∵△ABC为等边三角形,
    ∴△APF是等边三角形,
    ∴AP=PF,
    又∵AP=CQ,
    ∴PF=CQ,
    在△DPF和△DQC中,,
    ∴△DPF≌△DQC(AAS),
    ∴DP=DQ;
    (2)∵△PAF为等边三角形,PE⊥AC,
    可得AE=EF,
    由(1)知,△DPF≌△DQC
    ∴FD=CD,
    ∵AC=AE+EF+FD+CD,
    ∴AC=2EF+2FD=2(EF+FD)=2ED,
    ∵AC=BC=4,
    ∴2ED=4,
    ∴ED=2.
    【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,作辅助线构造出等边三角形和全等三角形是解题的关键,也是本题的难点.
    15.(2022秋·八年级课时练习)读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DB上,且
    ∠BAE=∠CDE,求证:AB=CD
    分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证明AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中两种对原题进行证明.
    图(1):延长DE到F使得EF=DE
    图(2):作CG⊥DE于G,BF⊥DE于F交DE的延长线于F
    图(3):过C点作CF∥AB交DE的延长线于F.

    【答案】选择(1)(3)证明,证明见解析
    【分析】如图(1)延长DE到F使得EF=DE,证明△DCE≌△FBE,得到∠CDE=∠F,BF=DC,结合题干条件即可得到结论;如图3,过C点作CF∥AB交DE的延长线于F,得到△ABE≌△FCE,AB=FC,结合题干条件即可得到结论,
    【详解】如图(1)延长DE到F使得EF=DE

    在△DCE和△FBE中,

    ∴△DCE≌△ FBE(SAS)
    ∴∠CDE=∠F,BF=DC
    ∵∠BAE=∠CDE
    ∴BF=AB
    ∴AB= CD
    如图3,过C点作CF∥AB交DE的延长线于F

    在△ABE和△FCE中

    ∴△ABE≌△ FCE(AAS),
    ∴AB=FC
    ∵∠BAE=∠CDE
    ∴∠F=∠CDE
    ∴CD=CF
    ∴AB=CD
    【点睛】此题考查全等三角形的判定与性质和等腰三角形的性质,解题关键在于利用三角形全等的性质证明

    考点5 作垂线法构造全等三角形
    16.(2023·全国·八年级假期作业)如图,已知AD为△ABC的中线,点E为AC上一点,连接BE交AD于点F,且AE=FE.
    求证:BF=AC.

    【答案】证明见解析
    【分析】方法一:当题中有三角形中线时,常加倍中线构造平行四边形,利用平行四边形和等腰三角形的性质证得结论.
    方法二:向中线作垂线,证明,得到,再根据AE=FE,得到角的关系,从而证明,最终得到结论.
    【详解】方法一:延长AD到G,使DG=AD,连接BG,CG,∵DG=AD,BD=DC,∴四边形ABGC是平行四边形,∴AC//BG,∠CAD=∠BGD,又∵AE=FE,∴∠CAD=∠AFE,∴∠BGD=∠AFE=∠BFG,∴BG=BF,∵BG=AC,∴BF=AC

    方法二:如图,分别过点、作,,垂足为、,
    则.
    ,,

    .
    ,,
    ,,
    又,

    .

    【点睛】本题是较为典型的题型,至少可以用到两种方法来解题,此题的特点就是必须有中线这个条件才能构造平行四边形或双垂线.
    17.(2021·全国·九年级专题练习)已知:△ABC中,CA=CB, ∠ACB=90º,D为△ABC外一点,且满足∠ADB=90º
    (1)如图所示,求证:DA+DB=DC

    (2)如图所示,猜想DA.DB.DC之间有何数量关系?并证明你的结论.

    (3)如图所示,过C作CH⊥BD于H,BD=6,AD=3,则CH= .

    【答案】(1)详见解析;(2)DA-DB=DC;(3)
    【分析】(1)过C点作CQ⊥CD交DB的延长线于Q点,由余角的性质可得∠ACD=∠QCB,∠ADC=∠Q,由“AAS”可证△ACD≌△BCQ,可得CD=CQ,AD=BQ,由等腰直角三角形性质可得DQ=CD,即可得结论;
    (2)过点C作CQ⊥CD交AD于点Q,由“SAS”可证△ACQ≌△BCD,可得AQ=BD,可证CQ=CD,且∠QCD=90°,即可得DA、DB、DC之间关系;
    (3)过点C作CQ⊥CD交BD于点Q,由“SAS”可证△ACD≌△BCQ,可得AD=BQ,可证△DCQ是等腰直角三角形,由等腰直角三角形的性质可求CH的长.
    【详解】证明:(1)如图,过C点作CQ⊥CD交DB的延长线于Q点

    ∵∠ACB=90°,CQ⊥CD,∠ADB=90°
    ∴∠ACD+∠DCB=90°,∠DCB+∠QCB=90°,∠ADC+∠CDQ=90°,∠CDQ+∠Q=90°
    ∴∠ACD=∠QCB,∠ADC=∠Q,且AC=BC
    ∴△ACD≌△BCQ(AAS)
    ∴CD=CQ,AD=BQ
    ∴DQ=DB+BQ=DB+AD
    ∵CD⊥CQ,∠DCQ=90°
    ∴DQ=CD
    ∴DB+AD=CD
    (2)DA-DB=CD
    理由如下:如图,过点C作CQ⊥CD交AD于点Q,

    ∵CA=CB,∠ACB=90°,
    ∴∠ABC=∠CAB=45°
    ∵∠ACB=90°,QC⊥CD
    ∴∠ACB=∠ADB=90°,
    ∴点A,点B,点D,点C四点共圆,
    ∴∠ADC=∠ABC=45°
    ∵QC⊥CD
    ∴∠CQD=∠CDQ=45°
    ∴CQ=CD,且∠QCD=90°
    ∴QD==CD
    ∵∠ACB=∠DCQ=90°,
    ∴∠ACQ=∠DCB,且AC=BC,CQ=CD
    ∴△ACQ≌△BCD(SAS)
    ∴AQ=BD
    ∴QD=CD=DA-AQ=DA-BD,
    即:DA-DB=
    (3)如图,过点C作CQ⊥CD交BD于点Q,

    ∵∠ACB=90°,QC⊥CD
    ∴∠ACB=∠ADB=90°,
    ∴点A,点B,点C,点D四点共圆,
    ∴∠CDQ=∠CAB=45°
    ∵QC⊥CD
    ∴∠CQD=∠CDQ=45°
    ∴CQ=CD,且∠QCD=90°
    ∴△DCQ是等腰直角三角形,
    ∵∠ACB=∠DCQ=90°,
    ∴∠ACD=∠QCB,且AC=BC,CQ=CD
    ∴△ACD≌△BCQ(SAS)
    ∴AD=BQ,
    ∴DQ=DB-BQ=DB-AD=3
    ∵△DCQ是等腰直角三角形,DQ=3,CH⊥DB
    ∴CH=DH=HQ=DQ=.
    故答案为.
    【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
    18.(2023·全国·八年级假期作业)如图,是延长线上一点,且,是上一点,,求证:.

    【答案】详见解析
    【分析】分别过点D、C作AB的垂线,构建与,证其全等即可求得答案.
    【详解】如图,过点C作于点G,过点D作的延长线于点F,
    则有∠DFB=∠CGB=∠CGA=90°,
    又∵∠DBF=∠CBG,BD=BC,
    ∴,
    ∴DF=CG,.
    又,
    ∴≌,
    .

    【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线,熟练掌握三角形全等的判定方法是解题的关键.

    考点6 补全图形法构造全等三角形
    19.(2023秋·全国·八年级专题练习)如图,ABC中,AC=BC,∠ACB=90°,AD平分∠BAC交BC于点D,过点B作BE⊥AD,交AD延长线于点E,F为AB的中点,连接CF,交AD于点G,连接BG.
    (1)线段BE与线段AD有何数量关系?并说明理由;
    (2)判断BEG的形状,并说明理由.

    【答案】(1)BE=AD,见解析;(2)BEG是等腰直角三角形,见解析
    【分析】(1)延长BE、AC交于点H,先证明△BAE≌△HAE,得BE=HE=BH,再证明△BCH≌△ACD,得BH=AD,则BE=AD;
    (2)先证明CF垂直平分AB,则AG=BG,再证明∠CAB=∠CBA=45°,则∠GAB=∠GBA=22.5°,于是∠EGB=∠GAB+∠GBA=45°,可证明△BEG是等腰直角三角形.
    【详解】证:(1)BE=AD,理由如下:
    如图,延长BE、AC交于点H,
    ∵BE⊥AD,
    ∴∠AEB=∠AEH=90°,
    ∵AD平分∠BAC,
    ∴∠BAE=∠HAE,
    在△BAE和△HAE中,

    ∴△BAE≌△HAE(ASA),
    ∴BE=HE=BH,
    ∵∠ACB=90°,
    ∴∠BCH=180°﹣∠ACB=90°=∠ACD,
    ∴∠CBH=90°﹣∠H=∠CAD,
    在△BCH和△ACD中,

    ∴△BCH≌△ACD(ASA),
    ∴BH=AD,
    ∴BE=AD.
    (2)△BEG是等腰直角三角形,理由如下:
    ∵AC=BC,AF=BF,
    ∴CF⊥AB,
    ∴AG=BG,
    ∴∠GAB=∠GBA,
    ∵AC=BC,∠ACB=90°,
    ∴∠CAB=∠CBA=45°,
    ∴∠GAB=∠CAB=22.5°,
    ∴∠GAB=∠GBA=22.5°,
    ∴∠EGB=∠GAB+∠GBA=45°,
    ∵∠BEG=90°,
    ∴∠EBG=∠EGB=45°,
    ∴EG=EB,
    ∴△BEG是等腰直角三角形.

    【点睛】本题考查等腰直角三角形的判定与性质,全等三角形的判定与性质等,理解等腰直角三角形的基本性质,并且掌握全等三角形中常见辅助线的作法是解题关键.
    20.(2023秋·全国·八年级专题练习)已知,如图中,,,的平分线交于点,,
    求证:.

    【答案】见解析.
    【分析】延长BD交CA的延长线于F,先证得△ACE≌△ABF,得出CE=BF;再证△CBD≌△CFD,得出BD=DF;由此得出结论即可.
    【详解】证明:如图,

    延长交的延长线于,










    平分






    【点睛】此题考查三角形全等的判定与性质,角平分线的性质,根据已知条件,作出辅助线是解决问题的关键.
    21.(2023秋·全国·八年级专题练习)在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.
    (1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;
    (2)如图2,当∠BAC=100°,时,求∠CBD的大小;
    (3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.

    【答案】(1)30°;(2)30°;(3)为或或.
    【分析】(1)由,,可以确定,旋转角为,时是等边三角形,且,知道的度数,进而求得的大小;
    (2)由,,可以确定,连接、.,,,由案.依次证明,.利用角度相等可以得到答案.
    (3)结合(1)(2)的解题过程可以发现规律,是等边三角形时,在内部时,在外部时,求得答案.
    【详解】解:(1)解(1)∵,,
    ∴,
    ∵,,
    ∴为等边三角形,
    ∴.
    又∵,
    ∴为等腰三角形,
    ∴,
    ∴.
    (2)方法1:如图作等边,连接、.

    ,.
    ,,



    .①
    ,,
    .②
    ,③
    由①②③,得,
    ,.
    ,,

    ,,


    .④
    ,,
    .⑤
    ,⑥
    由④⑤⑥,得.




    方法2 如下图所示,构造等边三角形ADE,连接CE.

    ∵在等腰三角形ACD中,,
    ∴,
    ∵,
    ∴.
    可证.
    结合角度,可得,.
    在和中,

    ∴,
    ∴.
    ∵,
    ∴.
    方法3 如下图所示,平移CD至AE,连接ED,EB,则四边形ACDE是平行四边形.

    ∵,
    ∴四边形ACDE是菱形,
    ∴,.
    ∴,
    ∴,
    ∴是等边三角形,是等腰三角形,
    ∴,,
    ∴.
    ∴.
    (3)由(1)知道,若,时,则;
    ①由(1)可知,设时可得,,


    ②由(2)可知,翻折到△,则此时,


    ③以为圆心为半径画圆弧交的延长线于点,连接,



    综上所述,为或或时,.
    【点睛】本题是一道几何结论探究题,解答这类题目的关键是要善于从探究特殊结论中归纳出一般性解题方法,并灵活运用这种方法解答一般性的问题,真正达到举一反三的目的.

    考点7 旋转法构造全等三角形
    22.(2023春·全国·八年级专题练习)(1)如图1,在四边形中,,分别是边上的点,且.求证:;
    (2)如图2,在四边形中,,分别是边上的点,且;求证:,
    (3)如图3,在四边形中,,分别是边延长线上的点,且,写出之间的数量关系,并证明你的结论.

    【答案】(1)见解析;(2)见解析;(3);理由见解析
    【分析】(1)延长到G,使,连接.证明,可得,进而可得结论;
    (2)延长至M,使,连接.证明.可得.然后根据,证明.可得.进而可以得到结论;
    (3)在上截取,使,连接.证明.可得.然后可得出,那么.
    【详解】(1)证明:如图1中,延长到G,使,连接.

    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴;
    (2)证明:如图2,延长至M,使,连接.

    ∵,
    ∴,
    在与中,

    ∴,
    ∴,
    ∵,
    在与中,

    ∴,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴;
    (3)解:.
    证明:如图3,在上截取,使,连接.

    ∵,
    ∴.
    在与中,

    ∴.
    ∴.
    ∴,
    ∴,
    ∴.
    ∵,
    ∴.
    ∴,
    ∵,
    ∴.
    【点睛】本题属于四边形综合题,考查了三角形全等的判定和性质等知识,解题的关键是学会利用旋转变换的思想添加辅助线,构造全等三角形解决问题,解题时注意一些题目虽然图形发生变化,但是证明思路和方法是类似的,属于中考压轴题.

    相关试卷

    考点16 弧长和扇形面积以及圆锥的13大考点方法归类-【考点通关】2023-2024学年九年级数学上册考点归纳与解题策略(人教版): 这是一份考点16 弧长和扇形面积以及圆锥的13大考点方法归类-【考点通关】2023-2024学年九年级数学上册考点归纳与解题策略(人教版),共8页。

    考点15 正多边形与圆的6大考点方法归类-【考点通关】2023-2024学年九年级数学上册考点归纳与解题策略(人教版): 这是一份考点15 正多边形与圆的6大考点方法归类-【考点通关】2023-2024学年九年级数学上册考点归纳与解题策略(人教版),共8页。

    考点14 整式的乘法19大考点归类-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版): 这是一份考点14 整式的乘法19大考点归类-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版),共8页。试卷主要包含了科学计数法等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        考点06 作辅助线构造全等三角形的七大方法-【考点通关】2023-2024学年八年级数学上册考点归纳与解题策略(人教版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map