2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.3等比数列课件
展开1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.
1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母q(q≠0)表示.(2)等比中项:如果在a与b中间插入一个数G,使 成等比数列,那么G叫做a与b的等比中项,此时,G2= .
2.等比数列的通项公式及前n项和公式(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an= .(2)等比数列通项公式的推广:an=amqn-m.(3)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn=________
= .
3.等比数列性质(1)若m+n=p+q,则 ,其中m,n,p,q∈N*.特别地,若2w=m+n,则 ,其中m,n,w∈N*.(2)ak,ak+m,ak+2m,…仍是等比数列,公比为 (k,m∈N*).
(4)等比数列{an}的前n项和为Sn,则Sn, , 仍成等比数列,其公比为qn.(n为偶数且q=-1除外)
1.等比数列{an}的通项公式可以写成an=cqn,这里c≠0,q≠0.2.等比数列{an}的前n项和Sn可以写成Sn=Aqn-A(A≠0,q≠1,0).3.数列{an}是等比数列,Sn是其前n项和.
判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a,b,c成等比数列的充要条件是b2=ac.( )(2)当公比q>1时,等比数列{an}为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{an}为等比数列,则S4,S8-S4,S12-S8成等比数列.( )
1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.
2.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6等于A.31 B.32 C.63 D.64
根据题意知,等比数列{an}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.
3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为____________.
1,3,9或9,3,1
∴这三个数为1,3,9或9,3,1.
例1 (1)(2022·全国乙卷)已知等比数列{an}的前3项和为168,a2-a5=42,则a6等于A.14 B.12 C.6 D.3
方法一 设等比数列{an}的公比为q,易知q≠1.
所以a6=a1q5=3,故选D.
方法二 设等比数列{an}的公比为q,
(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一
设第一个音的频率为a,相邻两个音之间的频率之比为q,那么an=aqn-1,根据最后一个音的频率是最初那个音的2倍,得a13=2a=aq12,即q= ,
等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.
跟踪训练1 (1)已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3等于A.16 B.8 C.4 D.2
设等比数列{an}的公比为q(q>0),
(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的 倍C.M>3D.N<7
设该等比数列为{an},公比为q,则a1=1,a13=2,
插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,
即证 >4,
所以 >5,
所以-1- >4,即M>4,
所以N=M+3>7,故D错误.
例2 已知数列{an}的各项均为正数,记Sn为{an}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{an}是等比数列;②数列{Sn+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.
选①②作为条件证明③:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),
解得q=2,所以a2=2a1.
选①③作为条件证明②:因为a2=2a1,{an}是等比数列,所以公比q=2,
选②③作为条件证明①:设Sn+a1=Aqn-1(A≠0),则Sn=Aqn-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;
当n≥2时,an=Sn-Sn-1=Aqn-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,an=Sn-Sn-1=Aqn-2(q-1)=A·2n-2=a1·2n-1,
所以{an}为等比数列.
(3)前n项和公式法:若数列{an}的前n项和Sn=k·qn-k(k为常数且k≠0,q≠0,1),则{an}是等比数列.
跟踪训练2 在数列{an}中, +2an+1=anan+2+an+an+2,且a1=2,a2=5.(1)证明:数列{an+1}是等比数列;
所以(an+1+1)2=(an+1)(an+2+1),
因为a1=2,a2=5,所以a1+1=3,a2+1=6,
所以数列{an+1}是以3为首项,2为公比的等比数列.
(2)求数列{an}的前n项和Sn.
由(1)知,an+1=3·2n-1,所以an=3·2n-1-1,
∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,
又数列{an}为等比数列,等比数列奇数项符号相同,可得a7=3,
(2)已知数列{an}是各项都为正数的等比数列,Sn为其前n项和,且S10=10,S30=70,那么S40等于A.150 B.-200C.150或-200 D.400
依题意,S10,S20-S10,S30-S20,S40-S30成等比数列,因此(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30.又因为数列{an}的各项都为正数,即S20>0,因此S20=30,S20-S10=20,
S40=S30+(S40-S30)=70+80=150.
(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.
跟踪训练3 (1)(2023·六安模拟)在等比数列{an}中,若a1+a2=16,a3+a4=24,则a7+a8等于A.40 B.36 C.54 D.81
在等比数列{an}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,
(2)等比数列{an}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于A.1 B.2 C.3 D.4
∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,
1.(2023·岳阳模拟)已知等比数列{an}满足a5-a3=8,a6-a4=24,则a3等于A.1 B.-1 C.3 D.-3
设an=a1qn-1,∵a5-a3=8,a6-a4=24,
2.已知数列{an}是等比数列,Sn为其前n项和,若a1+a2+a3=4,a4+a5+a6=8,则S12等于A.40 B.60 C.32 D.50
由等比数列的性质可知,数列S3,S6-S3,S9-S6,S12-S9是等比数列,即数列4,8,S9-S6,S12-S9是等比数列,因此S12=4+8+16+32=60.
3.已知等比数列{an}中,a2a3a4=1,a6a7a8=64,则a4a5a6等于A.±8 B.-8 C.8 D.16
又等比数列奇数项符号相同,所以a5=2,
4.(2022·日照模拟)河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1 016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{an},则lg2(a3·a5)的值为A.16 B.12 C.10 D.8
由题意,得{an}是以2为公比的等比数列,
∴lg2(a3·a5)=lg2(8×22×8×24)=12.
5.(多选)设等比数列{an}的公比为q,则下列说法正确的是A.数列{anan+1}是公比为q2的等比数列B.数列{an+an+1}是公比为q的等比数列C.数列{an-an+1}是公比为q的等比数列
对于B,当q=-1时,数列{an+an+1}的项中有0,不是等比数列;对于C,当q=1时,数列{an-an+1}的项中有0,不是等比数列;
7.已知Sn是等比数列{an}的前n项和,且an>0,S1+a1=2,S3+a3=22,则公比q=____,S5+a5=______.
由题意得2a1=2,∴a1=1.
8.已知数列{an}为等比数列,若数列{3n-an}也是等比数列,则数列{an}的通项公式可以为 ____________________.(写出一个即可)
an=3n-1(答案不唯一)
设等比数列{an}的公比为q,令bn=3n-an,则b1=3-a1,b2=32-a1q,b3=33-a1q2,∵{bn}是等比数列,∴ =b1b3,即(32-a1q)2=(3-a1)(33-a1q2),可化为q2-6q+9=0,解得q=3,取a1=1,则an=3n-1.(注:a1的值可取任意非零实数).
设数列{an}的公比为q,由题设得an=qn-1.由已知得q4=4q2,解得q=0(舍去),q=-2或q=2.故an=(-2)n-1或an=2n-1(n∈N*).
9.等比数列{an}中,a1=1,a5=4a3.(1)求数列{an}的通项公式;
由Sm=63得(-2)m=-188,此方程没有正整数解.若an=2n-1,则Sn=2n-1.由Sm=63得2m=64,解得m=6.综上,m=6.
(2)记Sn为{an}的前n项和,若Sm=63,求m.
10.Sn为等比数列{an}的前n项和,已知a4=9a2,S3=13,且公比q>0.(1)求an及Sn;
(2)是否存在常数λ,使得数列{Sn+λ}是等比数列?若存在,求出λ的值;若不存在,请说明理由.
假设存在常数λ,使得数列{Sn+λ}是等比数列.因为S1+λ=λ+1,S2+λ=λ+4,S3+λ=λ+13,
11.(多选)在数列{an}中,n∈N*,若= k(k为常数),则称{an}为“等差比数列”,下列关于“等差比数列”的判断正确的是A.k不可能为0B.等差数列一定是“等差比数列”C.等比数列一定是“等差比数列”D.“等差比数列”中可以有无数项为0
对于A,k不可能为0,正确;对于B,当an=1时,{an}为等差数列,但不是“等差比数列”,错误;对于C,当等比数列的公比q=1时,an+1-an=0,分式无意义,所以{an}不是“等差比数列”,错误;对于D,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确.
12.记Sn为等比数列{an}的前n项和,已知a1=8,a4=-1,则数列{Sn}A.有最大项,有最小项B.有最大项,无最小项C.无最大项,有最小项D.无最大项,无最小项
根据题意,等比数列{an}中,a1=8,a4=-1,
故S1最大,S2最小.
13.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,…),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=_____.
{bn}有连续四项在{-53,-23,19,37,82}中,bn=an+1,则an=bn-1,{an}有连续四项在{-54,-24,18,36,81}中.又{an}是等比数列,等比数列中有负数项则q<0,且负数项为相隔两项,等比数列各项的绝对值递增或递减,按绝对值由小到大的顺序排列上述数值:18,-24,36,-54,81,
很明显,-24,36,-54,81是{an}中连续的四项,
14.记Sn为数列{an}的前n项和,Sn=1-an,记Tn=a1a3+a3a5+…+a2n-1a2n+1,则an=_____,Tn=___________.
15.将正整数按照如图所示方式排列:试问2 024是表中第____行的第_______个数.
由题意得第n行有2n-1个数,前10行共有20+2+22+23+24+25
前11行共有20+2+22+23+24+25+26+27+28+29+210
故2 024在表中第11行,又表中第11行有210=1 024(个)数,故2 024是表中第11行的第1 001个数.
16.(2023·泰安模拟)已知等比数列{an}的前n项和为Sn,an>0,4S1+S2=S3.(1)求数列{an}的公比q;
由4S1+S2=S3,得4a1+a1+a2=a1+a2+a3,整理得4a1=a3,所以4a1=a1q2.因为a1≠0,所以q2=4,由题意得q>0,所以q=2.
an=a1·2n-1,
当n≥3时,f(n)单调递增,
2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.4数列中的构造问题课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.4数列中的构造问题课件,共60页。PPT课件主要包含了题型一,思维升华,n+1-n-1,题型二,n-1,题型三,倒数为特殊数列,课时精练,故选项AB错误,故选项D正确等内容,欢迎下载使用。
2024届高考数学一轮复习(新教材人教A版强基版)第六章数列必刷大题12数列的综合问题课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第六章数列必刷大题12数列的综合问题课件,共24页。PPT课件主要包含了则当n为奇数时,综上Sn=等内容,欢迎下载使用。
2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.1数列的概念课件: 这是一份2024届高考数学一轮复习(新教材人教A版强基版)第六章数列6.1数列的概念课件,共60页。PPT课件主要包含了落实主干知识,探究核心题型,课时精练,数列的有关概念,确定的顺序,每一个数,序号n,a1+a2++an,数列的分类,数列的第n项an等内容,欢迎下载使用。