专题07 列方程解决问题重难题型分类练(八大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版)
展开这是一份专题07 列方程解决问题重难题型分类练(八大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版),文件包含七年级数学上册专题07列方程解决问题重难题型分类练八大考点期末真题精选原卷版docx、七年级数学上册专题07列方程解决问题重难题型分类练八大考点期末真题精选解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
专题07 列方程解决问题重难题型分类练(八大考点)
一.行程类之一般相遇与追及
1.M、N两地相距600km,甲、乙两车分别从M、N两地出发,沿一条公路匀速相向而行,甲与乙的速度分别为100km/h和20km/h,甲从M地出发,到达N地立刻调头返回M地,并在M地停留等待乙车抵达,乙从N地出发前往M地,和甲车会合.
(1)求两车第二次相遇的时间;
(2)求甲车出发多长时间,两车相距20km.
2.A,B两地相距300千米,甲车从A地驶向B地,行驶80千米后,乙车从B地出发驶向A地,乙车行驶5小时到达A地,并原地休息.甲、乙两车匀速行驶,甲车速度是乙车速度的倍.
(1)甲车的行驶速度是 千米/时,乙车的行驶速度是 千米/时;
(2)求乙车出发后几小时两车相遇;(列方程解答此问)
(3)若甲车到达B地休息一段时间后按原路原速返回,且比乙车晚2小时到达A地.甲车从A地出发到返回A地过程中,甲车出发 小时,两车相距40千米;甲车在B地休息 小时.
3.A、B两地相距64千米,甲从A地出发,每小时行14千米,乙从B地出发,每小时行18千米.
(1)若两人同时出发相向而行,则需经过几小时两人相遇?
(2)若两人同时出发相向而行,则需几小时两人相距16千米?
(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?
二.行程类之车过隧道大桥
4.一列始终保持匀速行驶的普通火车用8秒的时间通过了长为96米的隧道(即从车头进入隧道入口到车尾离开隧道出口),这列火车又用13秒的时间通过了256米的隧道.
(1)求这列普通火车的长度;
(2)相邻车道有一列长度为214.5米,匀速相向行驶的高铁列车经过,普通火车与高铁列车完成会车(即从车头相遇开始到车尾相遇时结束)的时间是3.5秒,求高铁列车每小时行驶多少千米.
5.一列匀速行驶的列车在行进途中经过一个长700米的隧道,已知列车从进入隧道到离开隧道共需18秒时间.在这以过程中,坐在该列车上的小王看到身旁的窗口从进入隧道到离开隧道用了14秒时间,求该列车的行驶的速度和列车的长度.
6.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.
(1)这列队伍一共有多少名战士?
(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?
三.行程类之顺水逆水
7.一轮船航行于两个码头之间,逆水需10小时,顺水需6小时.已知该船在静水中每小时航行12千米,求水流速度和两码头间的距离.
8.一艘轮船在长江A、B两个码头之间航行,顺水航行需要4小时,逆水航行需要5小时,如果船在静水中的航速是18km/h,那么水的流速是多少?
四.(经典题型)方案设计类
9.为举办校园文化节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不足90人),下面是供货商给出的演出服装的价格表:
购买服装的套数 | 1套至45套 | 46套至90套 | 91套以上 |
每套服装的价格 | 60元 | 50元 | 40元 |
如果两班单独给每位同学购买一套服装,那么一共应付5020元.
(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?
(2)甲、乙两班各有多少名同学?
(3)如果甲班有10名同学被调去参加书画比赛不能参加演出,请你为两班设计一种最省钱的购买服装方案.
10.某商场销售一种夹克和衬衣,夹克每件定价100元,衬衣每件定价50元,商场在开展促销活动期间,向顾客提供两种优惠方案.
方案一:买一件夹克送一件衬衣;
方案二:夹克和衬衣均按定价的80%付款.
现有顾客要到该商场购买夹克30件,衬衣x件(x>30).
(1)用含x的代数式表示方案一购买共需付款y1元和方案二购买共需付款y2元.
(2)通过计算说明,购买衬衣多少件时,两种方案付款一样多?
(3)当x=40时,哪种方案更省钱?请说明理由.
11.某班级组织学生集体春游,已知班级总人数多于20人,其中有15名男同学,景点门票全票价为30元,对集体购票有两种优惠方案.
方案一:所有人按全票价的90%购票;
方案二:前20人全票,从第21人开始每人按全票价的80%购票;
(1)若共有35名同学,则选择哪种方案较省钱?
(2)当女同学人数是多少时,两种方案付费一样多?
12.某中学七年级(1)班要购买20个笔记本和x(x>40)支圆珠笔作为期末考试奖品,已知笔记本每本8元,圆珠笔每支0.8元.其中有甲、乙两家文具店可供选择,甲文具店优惠办法:买一个笔记本赠送2支圆珠笔,乙文具店优惠办法:全部商品按九折出售.
(1)着单独到甲文具店购买,笔记本应付 元,圆珠笔应付 元.
(2)若单独到乙文具店购买,笔记本应付 元,圆珠笔应付 元.
(3)当x等于多少时,单独到甲文具店购买和单独到乙文具店购买所花的总钱数一样多?
(4)若该班需要购买20个笔记本和50支圆珠笔,怎样购买最省钱?(直接写出购买方案即可)
五.日常生活中的方程--水电类
13.近日,无锡市发展改革委印发《关于优化调整居民阶梯气价政策有关事项的通知》,从2022年1月1日起,增加一、二档用气量,“一户多人口”政策同步调整.
气量分档 | 年用气量(立方米) | 价格(元/立方米) | |
调整前 | 调整后 | ||
第一档 | 年用气量≤300 | 年用气量≤400 | 2.73 |
第二档 | 300<年用气量≤600 | 400<年用气量≤1000 | 3.28 |
第三档 | 年用气量>600 | 年用气量>1000 | 3.82 |
人口超过4人的家庭,每增加1人,一、二档上限增加80立方米、200立方米(原政策一、二档上限增加60立方米、120立方米).
(1)若小明家有5口人,年用气量1000立方米.则调整前气费为 元,调整后气费为 元;
(2)小红家有4口人,若调整后比调整前气费节省109元,则小红家年用气量为多少立方米?
14.某市为了鼓励居民节约用水,采用分阶段计费的方法按月计算每户家庭的水费:月用水量不超过20m2时,按2元/m2计算:月用水量超过200m2时,其中的20m2仍按2元/m2计算,超过部分按2.6元/m2计算.设某户家庭月用水量xm2.
(1)用含x的式子表示:
当0≤x≤20时,水费为 ;当x>20时,水费为 ;
(2)
月份 | 4月 | 5月 | 6月 |
用水量 | 15 | 17 | a |
小花家第二季度用水情况如上表,小花家这个季度共缴纳水费117元,请你求出小花家6月份用水量a的值?
六.(易错题型)利润,购物类
15.某超市第一次用3800元购进了甲、乙两种商品,其中甲种商品40件,乙种商品160件.已知乙种商品每件进价比甲种商品每件进价贵5元.甲种商品售价为20元/件,乙种商品售价为25元/件.
(1)甲、乙两种商品每件进价各多少元?
(2)该超市将第一次购进的甲、乙两种商品全部销售完,可获得多少利润?
(3)该超市第二次又购进同样数量的甲、乙两种商品.其中甲种商品每件的进价不变,乙种商品进价每件少3元;甲种商品按原售价提价a%销售,乙种商品按原售价降价a%销售,如果第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多160元,那么a的值是多少?
16.甲、乙两家超市新年期间推出优惠活动,推出如表购物优惠方案:
甲超市 | 乙超市 | ||
消费金额(元) | 优惠活动 | 消费金额(元) | 优惠活动 |
0~100(包含100) | 无优惠 | 0~200(包含200) | 无优惠 |
100~350(包含350) | 一律享受九折优惠 | 大于200 | 超过200元的部分享受八折优惠 |
大于350 | 一律享受八折优惠 |
(1)小王需要购买价格为240元的商品,去哪家店更划算?
(2)小李带了252元去购物、为了买到最多的商品,应选择哪家超市?最多能买到原价为多少元的商品?
(3)小刘在甲超市购物、两次购物分别付了80元和288元,如果小刘把这两次购物改为一次性购物,付款多少元?
17.某商店用3700元购进A、B两种玻璃保温杯共80个,这两种玻璃保温杯的进价、标价如下表所示:
价格\类型 | A型 | B型 |
进价(元/个) | 35 | 65 |
标价(元/个) | 50 | 100 |
(1)这两种玻璃保温杯各购进多少个?
(2)已知A型玻璃保温杯按标价的8折出售,B型玻璃保温杯按标价的7.5折出售.在运输过程中有2个A型和1个B型玻璃保温杯不慎损坏,不能销售,请问在其它玻璃保温杯全部售出的情况下,该商店共获利多少元?
18.郑州丹尼斯超市(嵩山路店)购进A、B两种品牌足球共100个,已知购买A品牌足球比购买B品牌足球少花2800元,其中A品牌足球每个进价是50元,B品牌足球每个进价是80元.
(1)求购进A、B两种品牌足球各多少个?
(2)在销售过程中,A品牌足球每个售价是80元,很快全部售出;B品牌足球每个按进价加价25%销售,售出一部分后,恰逢元旦假期,商场搞促销活动,决定打九折出售剩余的B品牌足球,两种品牌足球全部售出后共获利2150元,有多少个B品牌足球打九折出售?
七.(经典题型)方程与数轴的融合
19.已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若P,Q两点同时出发,问运动时间为 秒时,点P和点Q间的距离为8个单位长度.
20.如图,在数轴上,O为原点,点A表示的数为﹣10,点B表示的数为4.
(1)A,B两点间的距离是 .
(2)若将数轴折叠,使得点A与点B重合,此时原点O与表示数 的点重合.
(3)若点A,B分别以每秒1个单位长度和每秒3个单位长度的速度同时向左运动,则几秒时点B追上点A?
(4)若点A,B以(3)中的速度相向而行,则几秒时A,B两点相距2个单位长度?
21.如图,O是数轴的原点,A、B是数轴上的两个点,A点对应的数是﹣1,B点对应的数是8,C是线段AB上一点,满足.
(1)求C点对应的数;
(2)动点M从A点出发,以每秒2个单位长度的速度沿数轴向右匀速运动,当点M到达C点后停留2秒钟,然后继续按原速沿数轴向右匀速运动到B点后停止.在点M从A点出发的同时,动点N从B点出发,以每秒1个单位长度的速度沿数轴匀速向左运动,一直运动到A点后停止.设点N的运动时间为t秒.
①当MN=4时,求t的值;
②在点M,N出发的同时,点P从C点出发,以每秒3个单位长度的速度沿数轴向左匀速运动,当点P与点M相遇后,点P立即掉头按原速沿数轴向右匀速运动,当点P与点N相遇后,点P又立即掉头按原速沿数轴向左匀速运动到A点后停止.当PM=2PN时,请直接写出t的值.
22.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P为AB的中点,直接写出点P对应的数;
(2)数轴的原点右侧是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;
(3)现在点A、点B分别以每秒2个单位长度和每秒0.5个单位长度的速度同时向右运动,同时点P以每秒6个单位长度的速度从表示数1的点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?
八.(易错题型)数字类
23.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是 .
24.有一个两位数,个位上的数比十位上的数大5,如果把这个两位数的两个数字的位置对换,那么所得的新数与原数的和是143.求这个两位数.
25.列方程解应用题:
一个两位数,个位数字是十位数字的2倍,如果把十位上的数与个位上的数对调后,那么所得的两位数比原来的两位数大36,求原来的两位数.
相关试卷
这是一份专题09 压轴大题分类练(三大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版),文件包含七年级数学上册专题09压轴大题分类练三大考点期末真题精选原卷版docx、七年级数学上册专题09压轴大题分类练三大考点期末真题精选解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
这是一份专题08 代数式重难考点分类练(七大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版),文件包含七年级数学上册专题08代数式重难考点分类练七大考点期末真题精选原卷版docx、七年级数学上册专题08代数式重难考点分类练七大考点期末真题精选解析版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
这是一份专题06 选择压轴题分类练(十一大考点)(期末真题精选)-2022-2023学年七年级数学上学期期末分类复习满分冲刺(人教版),文件包含七年级数学上册专题06选择压轴题分类练十一大考点期末真题精选原卷版docx、七年级数学上册专题06选择压轴题分类练十一大考点期末真题精选解析版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。