第21章 二次函数 沪科版九年级数学上册复习课件
展开
这是一份第21章 二次函数 沪科版九年级数学上册复习课件,共34页。
二次函数复习课二次函数的定义: 形如y=ax2+bx+c (a,b,c是常数,a≠0) 的函数叫做二次函数想一想:函数的自变量x是否可以取任何值呢?注意:当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范围.二次函数的一般形式 函数y=ax2+bx+c其中a、b、c是常数切记:a≠0右边一个x的二次多项式(不能是分式或根式)二次函数的特殊形式:当b=0时, y=ax2+c当c=0时, y=ax2+bx当b=0,c=0时, y=ax2知识运用 下列函数中,哪些是二次函数? (1)y=3x-1 (2)y=3x2 (3)y=3x3+2x2 (4)y=2x2-2x+1 (5)y=x -2 +x (6)y=x2-x(1+x)知识运用m2-2二次函数?(一)形如y = ax 2 (a≠0) 的二次函数 向上向下直线X=0(0,0)(二)形如y = ax 2+k (a≠0) 的二次函数><直线X=0(0,K)向上向下直线X=h(h,0)(三)、形如y = a (x - h) 2 ( a≠0 ) 的二次函数巩固练习1:(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;(2)已知y = - nx 2 (n>0) , 则图象 ( )(填“可能”或“不可能”)过点A(-2,3)。上Y轴(0,0)一、二不可能上直线X=0(0,3)上3(2)已知(如图)抛物线y = ax 2+k的图象,则a 0,k 0;若图象过A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。〉〈0.5-20.5x 2-2(四) 形如y = a (x+h) 2 +k (a ≠0) 的二次函数a > 0 a < 0直线X=-h(-h,k)练习巩固2:(1)抛物线 y = 2 (x –3 ) 2+1 的开口向 , 对称轴 , 顶点坐标是 (2)若抛物线y = a (x+m) 2+n开口向下,顶点在第四象限,则a 0, m 0, n 0。 上X=3(3,1)〈〈〈0观察y=x2与y=x2-6x+7的函数图象,说说y=x2-6x+7的图象是怎样由y=x2的图象平移得到的?y=x2-6x+7=x2-6x+9-2=(x-3)2-2平移规律:h决定左右左正右负K决定上下上正下负基础练习 1.由y=2x2的图象向左平移两个单位,再向下平 移三个单位,得到的图象的函数解析式为 ________________________2.由函数y= -3(x-1)2+2的图象向右平移4个单位,再向上平移3个单位,得到的图象的函数解析式为_____________________________y=2(x+2)2-3=2x2+8x+5y= - 3(x-1-4)2+2+3=-3x2+30x-703.抛物线y=ax2向左平移一个单位,再向下平移8个单位且y=ax2过点(1,2).则平移后的解析式为______________;y=2(x+1)2-84.将抛物线y=x2-6x+4如何移动才能得到y=x2.逆向思考,由y=x2-6x+4 =(x-3)2-5知:先向左平移3个单位,再向上平移5个单位.二次函数y=ax2+bx+c(a≠0)的图象和性质1.顶点坐标与对称轴2.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=ax2+bx+c(a>0)y=ax2+bx+c(a0开口向下a0交点在x轴下方c0与x轴有一个交点b2-4ac=0与x轴无交点b2-4ac0; ⑤当0<x1<x2<2时,y1 > y2 你认为其中正确的个数有( ) A.2 B.3 C.4 D.5 C练一练:已知y=ax2+bx+c的图象如图所示, a___0, b____0, c_____0, abc____0 b___2a, 2a-b_____0, 2a+b_______0 b2-4ac_____0 a+b+c_____0, a-b+c____0 4a-2b+c_____00-11-2<<<<>>><>>>二次函数与一元二次方程二次函数y=ax2+bx+c的图象和x轴交点有三种情况:有两个交点,有一个交点,没有交点.当二次函数y=ax2+bx+c的图象和x轴有交点时,交点的横坐标就是当y=0时自变量x的值,即一元二次方程ax2+bx+c=0的根.有两个交点有两个相异的实数根b2-4ac > 0有一个交点有两个相等的实数根b2-4ac = 0没有交点没有实数根b2-4ac < 0选择抛物线y=x2-4x+3的对称轴是_____________. A 直线x=1 B直线x= -1 C 直线x=2 D直线x= -2(2)抛物线y=3x2-1的________________ A 开口向上,有最高点 B 开口向上,有最低点 C 开口向下,有最高点 D 开口向下,有最低点(3)若y=ax2+bx+c(a 0)与轴交于点A(2,0), B(4,0), 则对称轴是_______ A 直线x=2 B直线x=4 C 直线x=3 D直线x= -3(4)若y=ax2+bx+c(a 0)与轴交于点A(2,m), B(4,m), 则对称轴是_______ A 直线x=3 B 直线x=4 C 直线x= -3 D直线x=2cBCA2、已知抛物线顶点坐标(h, k),通常设抛物线解析式为_______________3、已知抛物线与x 轴的两个交点(x1,0)、 (x2,0),通常设解析式为_____________1、已知抛物线上的三点,通常设解析式为________________y=ax2+bx+c(a≠0)y=a(x-h)2+k(a≠0)y=a(x-x1)(x-x2) (a≠0)求抛物线解析式的三种方法练习 根据下列条件,求二次函数的解析式。(1)、图象经过(0,0), (1,-2) , (2,3) 三点;(2)、图象的顶点(2,3), 且经过点(3,1) ;(3)、图象经过(-2,0), (3,0) ,且最高点 的纵坐标是3 。 例1、已知二次函数y=ax2+bx+c的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6)。求a、b、c。解:∵二次函数的最大值是2∴抛物线的顶点纵坐标为2又∵抛物线的顶点在直线y=x+1上∴当y=2时,x=1 ∴顶点坐标为( 1 , 2)∴设二次函数的解析式为y=a(x-1)2+2又∵图象经过点(3,-6)∴-6=a (3-1)2+2 ∴a=-2∴二次函数的解析式为y=-2(x-1)2+2即: y=-2x2+4x综合创新:1.已知抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的 形状相同,顶点在直线x=1上,且顶点到x轴的距离 为5,请写出满足此条件的抛物线的解析式.解:抛物线y=ax2+bx+c与抛物线y=-x2-3x+7的形状 相同 a=1或-1 又顶点在直线x=1上,且顶点到x轴的距离为5, 顶点为(1,5)或(1,-5) 所以其解析式为: (1) y=(x-1)2+5 (2) y=(x-1)2-5 (3) y=-(x-1)2+5 (4) y=-(x-1)2-5 2.若a+b+c=0,a0,把抛物线y=ax2+bx+c向下平移4个单位,再向左平移5个单位所到的新抛物线的顶点是(-2,0),求原抛物线的解析式.分析:(1)由a+b+c=0可知,原抛物线的图象经过(1,0)(2) 新抛物线向右平移5个单位, 再向上平移4个单位即得原抛物线答案:y=-x2+6x-5练习1、已知抛物线y=ax2+bx-1的对称轴是x=1 , 最高点在直线y=2x+4上。 (1) 求此抛物线的顶点坐标.(2)求抛物线解析式.(3)求抛物线与直线的交点坐标.解:∵二次函数的对称轴是x=1 ∴图象的顶点横坐标为1又∵图象的最高点在直线y=2x+4上∴当x=1时,y=6∴顶点坐标为( 1 , 6) 例2、已知抛物线y=ax2+bx+c与x轴正、负半轴分别交于A、B两点,与y轴负半轴交于点C。若OA=4,OB=1,∠ACB=90°,求抛物线解析式。解: ∵点A在正半轴,点B在负半轴OA=4,∴点A(4,0)OB=1, ∴点B(-1,0)∵ ∠ACB=90°OC⊥ AB∴ ∠ CAO=∠BCO ∠CAO+∠OCA=90,∠OCA+∠BCO=90∴∠BOC=∠COA,∴△BOC∽△COA∴OB/OC=OC/OA∴OC=2,点C(0,-2)由题意可设y=a(x+1)(x-4)得:a(0+1)(0-4)=-2∴a=0.5 ∴ y=0.5(x+1)(x-4)练习、已知二次函数y=ax2-5x+c的图象如图。(1)、当x为何值时,y随x的增大而增大;(2)、当x为何值时,y