湖南省怀化市2020年中考数学真题(含详解)
展开
这是一份湖南省怀化市2020年中考数学真题(含详解),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
湖南省怀化市2020年中考数学真题
一、选择题(每小题的四个选项中只有一项是正确的,请将正确选项的代号填涂在答题卡的相应位置上)
1.下列数中,是无理数的是( )
A. B. 0 C. D.
【答案】D
【解析】
【分析】
根据无理数的三种形式求解即可.
【详解】解:-3,0,是有理数,是无理数.
故选:D.
【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
2.下列运算正确的是( )
A. B. C. D.
【答案】B
【解析】
【分析】
分别根据合并同类项的法则、同底数幂的除法法则、积的乘方与同底数幂的乘法法则计算各项,进而可得答案.
【详解】解:A、与不是同类项,不能合并,所以本选项计算错误,不符合题意;
B、,所以本选项计算正确,符合题意;
C、,所以本选项计算错误,不符合题意;
D、,所以本选项计算错误,不符合题意.
故选:B.
【点睛】本题考查了合并同类项、同底数幂的除法和乘法以及积的乘方等运算法则,属于基本题型,熟练掌握上述基础知识是关键.
3.《三国演义》《红楼梦》《水浒传》《西游记》是我国古典长篇小说四大名著.其中2016年光明日报出版社出版的《红楼梦》有350万字,则“350万”用科学记数法表示为( )
A. B. C. D.
【答案】A
【解析】
【分析】
科学记数法的形式是: ,其中<10,为整数.所以,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数。本题小数点往左移动到的后面,所以
【详解】解:万
故选
【点睛】本题考查的知识点是用科学记数法表示绝对值较大的数,关键是在理解科学记数法的基础上确定好的值,同时掌握小数点移动对一个数的影响.
4. 若一个多边形内角和为1080°,则这个多边形的边数为【 】
A. 6 B. 7 C. 8 D. 9
【答案】C
【解析】
多边形内角和定理.
【分析】设这个多边形的边数为n,由n边形的内角和等于180°(n﹣2),即可得方程180(n﹣2)=1080,
解此方程即可求得答案:n=8.故选C.
5.如图,已知直线,被直线所截,且,若,则的度数为( )
A. B. C. D.
【答案】D
【解析】
【分析】
首先根据对顶角相等可得∠1的度数,再根据平行线的性质可得的度数.
【详解】解:∵=40°,
∴∠1==40°,
∵a∥b,
∴=∠1=40°,
故选:D.
【点睛】此题主要考查了对顶角相等和平行线的性质,关键是掌握两直线平行,同位角相等.
6.小明到某公司应聘,他想了解自己入职后的工资情况,他需要关注该公司所有员工工资的( )
A. 众数 B. 中位数 C. 方差 D. 平均数
【答案】B
【解析】
【分析】
根据题意,结合该公司所有员工工资的情况,从统计量的角度分析可得答案.
【详解】解:根据题意,小明到某公司应聘,了解这家公司的员工的工资情况,就要全面的了解中间员工的工资水平, 故最应该关注的数据是中位数,
故选:B.
【点睛】本题考查的是平均数,众数,中位数,方差的含义,以及在实际情境中统计意义,掌握以上知识是解题的关键.
7.在中,,平分,交于点,,垂足为点,若,则的长为( )
A. 3 B. C. 2 D. 6
【答案】A
【解析】
【分析】
证明△ABD≌△AED即可得出DE的长.
【详解】∵DE⊥AC,
∴∠AED=∠B=90°,
∵AD平分∠BAC,
∴∠BAD=∠EAD,
又∵AD=AD,
∴△ABD≌△AED,
∴DE=BE=3,
故选:A.
【点睛】本题考查了全等三角形的判断和性质,角平分线的性质,掌握全等三角形的判定定理是解题关键.
8.已知一元二次方程有两个相等的实数根,则的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据题意可得方程的判别式△=0,进而可得关于k的方程,解方程即得答案.
【详解】解:由题意,得:,解得:.
故选:C.
【点睛】本题考查了一元二次方程的根的判别式,属于基础题型,熟知一元二次方程的根的判别式与方程根的个数的关系是解题关键.
9.在矩形中,、相交于点,若的面积为2,则矩形的面积为( )
A. 4 B. 6 C. 8 D. 10
【答案】C
【解析】
分析】
根据矩形的性质得到OA=OB=OC=OD,推出,即可求出矩形ABCD的面积.
【详解】∵四边形ABCD是矩形,对角线、相交于点,
∴AC=BD,且OA=OB=OC=OD,
∴,
∴矩形的面积为,
故选:C
【点睛】此题考查矩形的性质:矩形的对角线相等,且互相平分,由此可以将矩形的;面积四等分,由此可以解决问题,熟记矩形的性质定理是解题的关键.
10.在同一平面直角坐标系中,一次函数与反比例函数的图像如图所示、则当时,自变量的取值范围为( )
A B. C. D.
【答案】D
【解析】
【分析】
观察图像得到两个交点的横坐标,再观察一次函数函数图像在反比例函数图像上方的区段,从而可得答案.
【详解】解:由图像可得:两个交点的横坐标分别是:
所以:当时,
,
故选D.
【点睛】本题考查的是利用一次函数图像与反比例函数图像解不等式,掌握数型结合的方法是解题的关键.
二、填空题(请将答案直接填写在答题卡的相应位置上)
11.代数式有意义,则x的取值范围是__.
【答案】x>1
【解析】
【分析】
根据被开方式大于零列式解答即可.
【详解】解:由题意得:x﹣1>0,
解得:x>1,
故答案为x>1.
【点睛】本题考查了代数式有意义时字母的取值范围,代数式有意义时字母的取值范围一般从几个方面考虑:①当代数式是整式时,字母可取全体实数;②当代数式是分式时,考虑分式的分母不能为0;③当代数式是二次根式时,被开方数为非负数.
12.若因式分解:__________.
【答案】
【解析】
【分析】
应用提取公因式法,公因式x,再运用平方差公式,即可得解.
【详解】解:
【点睛】此题主要考查运用提公因式进行因式分解,平方差公式的运用,熟练掌握即可解题.
13.某校招聘教师,其中一名教师的笔试成绩是80分,面试成绩是60分,综合成绩笔试占60%,面试占40%,则该教师的综合成绩为_________分.
【答案】72
【解析】
【分析】
根据综合成绩笔试占60%,面试占40%,即综合成绩等于笔试成绩乘以60%,加上面试成绩乘以40%,即可求解.
【详解】解:根据题意知,该名老师的综合成绩为(分)
故答案为:72.
【点睛】本题考查加权平均数及其计算,是中考的常考知识点,熟练掌握其计算方法是解题的关键.
14.如图,在和中,,,,则________º.
【答案】130
【解析】
【分析】
证明△ABC≌△ADC即可.
【详解】∵,,AC=AC,
∴△ABC≌△ADC,
∴∠D=∠B=130°,
故答案为:130.
【点睛】本题考查了全等三角形的判定和性质,掌握判定定理是解题关键.
15.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留).
【答案】24π cm²
【解析】
【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.
【详解】解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,
圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,
且底面周长为:2π×2=4π(cm),
∴这个圆柱的侧面积是4π×6=24π(cm²).
故答案为:24π cm².
【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
16.如图,,,,…,,都是一边在轴上的等边三角形,点,,,…,都在反比例函数的图象上,点,,,…,,都在轴上,则的坐标为________.
【答案】
【解析】
【分析】
如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,先在△OCB1中,表示出OC和B1C的长度,表示出B1的坐标,代入反比例函数,求出OC的长度和OA1的长度,表示出A1的坐标,同理可求得A2、A3的坐标,即可发现一般规律.
【详解】如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,
∵△OA1B1为等边三角形,
∴∠B1OC=60°,
∴,B1C= OC,
设OC的长度为x,则B1的坐标为(),代入函数关系式可得:,
解得,x=1或x=-1(舍去),
∴OA1=2OC=2,
∴A1(2,0)
设A1D的长度为y,同理,B2D为y,B2的坐标表示为,
代入函数关系式可得,
解得:y=或y=(舍去)
∴A1D=,A1A2=,OA2=
∴A2(,0)
设A2E的长度为z,同理,B3E为z,B3的坐标表示为,
代入函数关系式可得,
解得:z=或z=(舍去)
∴A2E=,A2A3=,OA3=
∴A3(,0),
综上可得:An(,0),
故答案为:.
【点睛】本题考查图形类规律探索、反比例函数的性质、等边三角形的性质、求解一元二次方程和解直角三角形,灵活运用各类知识求出A1、A2、A3的坐标是解题的关键.
三、解答题
17.计算:
【答案】
【解析】
【分析】
按照公式、特殊角的三角函数值、化简二次根式、取绝对值符号进行运算,最后计算加减即可.
【详解】解:原式=
.
故答案为
【点睛】本题主要考查实数的运算,解题的关键是掌握零指数幂、负指数幂公式、熟记特殊锐角三角函数值及二次根式与绝对值的性质等.
18.先化简,再求值:,然后从,0,1中选择适当的数代入求值.
【答案】,1.
【解析】
【分析】
根据分式的运算法则进行运算求解,最后代入求值即可.
【详解】原式
.
∵x+1≠0且x-1≠0且x+2≠0,
∴x≠-1且x≠1且x≠-2,
当时,分母不为0,代入:
原式.
【点睛】本题考查分式的加减乘除混合运算,注意运算顺序为:先算乘除,再算加减,有括号先算括号内的;另外本题选择合适的数时要注意选择的数不能使分母为0.
19.为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:
(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;
(2)请你将条形统计图补全;
(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?
(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
【答案】(1)50,72;(2)见解析;(3)96名;(4).
【解析】
【分析】
(1)用条形统计图中D类的人数除以扇形统计图中D类所占百分比即可求出被抽查的总人数,用条形统计图中A类的人数除以总人数再乘以360°即可求出扇形统计图中A类所占扇形的圆心角的度数;
(2)用总人数减去其它三类人数即得B类人数,进而可补全条形统计图;
(3)用C类人数除以总人数再乘以600即可求出结果;
(4)先利用列表法求出所有等可能的结果数,再找出王芳和小颖两名学生选择同一个项目的结果数,然后根据概率公式计算即可.
【详解】解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为;
故答案为:50,72;
(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:
(3)名,
答:估计该校学生选择“C.社会实践类”的学生共有96名;
(4)所有可能的情况如下表所示:
由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,
∴王芳和小颖两名学生选择同一个项目的概率.
【点睛】本题是统计与概率类综合题,主要考查了条形统计图、扇形统计图、利用样本估计总体和求两次事件的概率等知识,属于常考题型,正确理解题意、熟练掌握上述基本知识是解题的关键.
20.如图,某数学兴趣小组为测量一棵古树的高度,在距离古树A点处测得古树顶端D的仰角为30°,然后向古树底端C步行20米到达点B处,测得古树顶端D的仰角为45°,且点A、B、C在同一直线上求古树CD的高度.(已知:,结果保留整数)
【答案】27米
【解析】
【分析】
设CB=CD=x,根据tan30°=即可得出答案.
【详解】解:由题意可知,AB=20,∠DAB=30°,∠C=90°,∠DBC=45°,
∵△BCD是等腰直角三角形,
∴设CB=CD=x,
tan30°==,
解得x=10+10≈10×1.732+10=27.32≈27,
∴CD=27,
答:CD的高度为27米.
【点睛】本题考查了解直角三角形的实际应用,等腰三角形的性质,构造直角三角形是解题关键.
21.定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是____________(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形中,∥,,过点D作BD垂线交BC的延长线于点E,且,证明:四边形是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形内接于⊙O中,.求⊙O的半径.
【答案】(1)④;(2)证明过程见解析;③4
【解析】
【分析】
(1)根据垂等四边形的性质对每个图形判断即可;
(2)根据已知条件可证明四边形ACED是平行四边形,即可得到AC=DE,再根据等腰直角三角形的性质即可得到结果;
(3)过点O作,根据面积公式可求得BD的长,根据垂径定理即可得到答案.
【详解】(1)①平行四边形的对角线互相平分但不垂直和相等,故不是;②矩形对角线相等但不垂直;③菱形的对角线互相垂直但不相等;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;
(2)∵,,
∴AC∥DE,
又∵∥,
∴四边形ADEC是平行四边形,
∴AC=DE,
又∵,
∴△BDE是等腰直角三角形,
∴BD=DE,
∴BD=AC,
∴四边形是垂等四边形.
(3)如图,过点O作,
∵四边形是垂等四边形,
∴AC=BD,
又∵垂等四边形的面积是24,,根据垂等四边形的面积计算方法得:
,
又∵,
∴,
设半径为r,根据垂径定理可得:
在△ODE中,OD=r,DE=,
∴,
∴的半径为4.
【点睛】本题主要考查了四边形性质与圆的垂径定理应用,准确理解新定义的垂等四边形的性质是解题的关键.
22.某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.
(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.
(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.
【答案】(1)y=-100x+10000;(2)共有四种采购方案:①甲型电脑12台,乙型电脑8台,②甲型电脑13台,乙型电脑7台,③甲型电脑14台,乙型电脑6台,④甲型电脑15台,乙型电脑5台,采购甲型电脑12台,乙型电脑8台时商店获得最大利润,最大利润是8800元.
【解析】
【分析】
(1)根据利润等于每台电脑的利润乘以台数列得函数关系式即可;
(2)根据题意列不等式组,求出解集,根据解集即可得到四种采购方案,由(1)的函数关系式得到当x取最小值时,y有最大值,将x=12代入函数解析式求出结果即可.
【详解】(1)由题意得:y=(2000-1600)x+(3000-2500)(20-x)=-100x+10000,
∴全部售出后该商店获利y与x之间函数表达式为y=-100x+10000;
(2)由题意得: ,
解得,
∵x为正整数,
∴x=12、13、14、15,
共有四种采购方案:
①甲型电脑12台,乙型电脑8台,
②甲型电脑13台,乙型电脑7台,
③甲型电脑14台,乙型电脑6台,
④甲型电脑15台,乙型电脑5台,
∵y=-100x+10000,且-100
相关试卷
这是一份模拟真题湖南省怀化市中考数学真题模拟测评 (A)卷(含答案详解),共29页。试卷主要包含了如图,某汽车离开某城市的距离y,下列方程中,解为的方程是等内容,欢迎下载使用。
这是一份模拟真题湖南省怀化市中考数学五年真题汇总 卷(Ⅲ)(含答案详解),共31页。试卷主要包含了下列函数中,随的增大而减小的是,利用如图①所示的长为a等内容,欢迎下载使用。
这是一份【中考特训】湖南省怀化市中考数学三年高频真题汇总 卷(Ⅱ)(含详解),共26页。试卷主要包含了如图,E,下列方程中,解为的方程是等内容,欢迎下载使用。