2022年中考数学真题考点分类专练专题32三角形压轴综合问题(含解析)
展开
这是一份2022年中考数学真题考点分类专练专题32三角形压轴综合问题(含解析),共85页。试卷主要包含了解答题等内容,欢迎下载使用。
备战2023年中考数学必刷真题考点分类专练(全国通用)
专题32三角形压轴综合问题
一、解答题
1.(·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
(1)问题发现:
如图1,若和是顶角相等的等腰三角形,BC,DE分别是底边.求证:;
图1
(2)解决问题:如图2,若和均为等腰直角三角形,,点A,D,E在同一条直线上,CM为中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
图2
【答案】(1)见详解
(2);
【详解】
【分析】
(1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;
(2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.
(1)
证明:∵和是顶角相等的等腰三角形,
∴,,,
∴,
∴.
在和中,
,
∴,
∴.
(2)
解:,,
理由如下:由(1)的方法得,,
∴,,
∵是等腰直角三角形,
∴,
∴,
∴,
∴.
∵,,
∴.
∵,
∴,
∴.
∴.
【点睛】
此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.
2.(·辽宁大连·中考真题)综合与实践
问题情境:
数学活动课上,王老师出示了一个问题:如图1,在中,D是上一点,.求证.
独立思考:
(1)请解答王老师提出的问题.
实践探究:
(2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长至点E,使,与的延长线相交于点F,点G,H分别在上,,.在图中找出与相等的线段,并证明.”
问题解决:
(3)数学活动小组河学时上述问题进行特殊化研究之后发现,当时,若给出中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若,,,求的长.”
【答案】(1)证明见详解;(2)证明见详解;(3)
【详解】
【分析】
(1)利用三角形的内角和定理可得答案;
(2)如图,在BC上截取 证明 再证明 证明 可得 从而可得结论;
(3)如图,在BC上截取 同理可得: 利用勾股定理先求解 证明 可得 可得 证明 可得 而 可得 再利用勾股定理求解BE,即可得到答案.
【详解】
证明:(1)
而
(2) 理由如下:
如图,在BC上截取
,
∵
∴
∴
∵
∴
(3)如图,在BC上截取
同理可得:
而
而
【点睛】
本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,作出适当的辅助线构建全等三角形是解本题的关键.
3.(·山东青岛·中考真题)【图形定义】
有一条高线相等的两个三角形称为等高三角形.
例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形.
【性质探究】
如图①,用,分别表示和的面积.
则,
∵
∴.
【性质应用】
(1)如图②,D是的边上的一点.若,则__________;
(2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;
(3)如图③,在中,D,E分别是和边上的点,若,,,则__________.
【答案】(1)
(2);
(3)
【详解】
【分析】
(1)由图可知和是等高三角形,然后根据等高三角形的性质即可得到答案;
(2)根据,和等高三角形的性质可求得,然后根据和等高三角形的性质可求得;
(3)根据,和等高三角形的性质可求得,然后根据,和等高三角形的性质可求得.
(1)
解:如图,过点A作AE⊥BC,
则,
∵AE=AE,
∴.
(2)
解:∵和是等高三角形,
∴,
∴;
∵和是等高三角形,
∴,
∴.
(3)
解:∵和是等高三角形,
∴,
∴;
∵和是等高三角形,
∴,
∴.
【点睛】
本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.
4.(·山东烟台·中考真题)
(1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
(2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出的值.
(3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且==.连接BD,CE.
①求的值;
②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
【答案】(1)见详解
(2)
(3)①;②
【详解】
【分析】
(1)证明△BAD≌△CAE,从而得出结论;
(2)证明△BAD∽△CAE,进而得出结果;
(3)①先证明△ABC∽△ADE,再证得△CAE∽△BAD,进而得出结果;
②在①的基础上得出∠ACE=∠ABD,进而∠BFC=∠BAC,进一步得出结果.
(1)
证明:∵△ABC和△ADE都是等边三角形,
∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD≌△CAE(SAS),
∴BD=CE;
(2)
解:∵△ABC和△ADE都是等腰直角三角形,
,∠DAE=∠BAC=45°,
∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
∴∠BAD=∠CAE,
∴△BAD∽△CAE,
;
(3)
解:①,∠ABC=∠ADE=90°,
∴△ABC∽△ADE,
∴∠BAC=∠DAE,,
∴∠CAE=∠BAD,
∴△CAE∽△BAD,
;
②由①得:△CAE∽△BAD,
∴∠ACE=∠ABD,
∵∠AGC=∠BGF,
∴∠BFC=∠BAC,
∴sin∠BFC.
【点睛】
本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.
5.(·广西·中考真题)已知,点A,B分别在射线上运动,.
(1)如图①,若,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为,连接.判断OD与有什么数量关系?证明你的结论:
(2)如图②,若,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:
(3)如图③,若,当点A,B运动到什么位置时,的面积最大?请说明理由,并求出面积的最大值.
【答案】(1),证明见详解
(2)
(3)当时,的面积最大;理由见详解,面积的最大值为
【详解】
【分析】
(1)根据“直角三角形斜边中线等于斜边一半”可得OD=AB,OD′=A′B′,进而得出结论;
(2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;
(3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.
(3)以AB为斜边在其右侧作等腰直角三角形ABC,连接OC交AB于点T,在OT上取点E,使OE=BE,连接BE,由(2)可知,当时,OC最大,当时,此时OT最大,即的面积最大,由勾股定理等进行求解即可.
(1)
解:,证明如下:
,AB中点为D,
,
为的中点,,
,
,
;
(2)
解:如图1,
作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,
当O运动到O′时,OC最大,
此时△AOB是等边三角形,
∴BO′=AB=6,
OC最大=CO′=CD+DO′=AB+BO′=3+3;
(3)
解:如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,
∴AI=AB=3,∠AOB=∠AIB=45°,
则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,
此时△AOB的面积最大,
∵OC=CI+OI=AB+3=3+3,
∴S△AOB最大=×6×(3+3)=9+9.
【点睛】
本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.
6.(·山东潍坊·中考真题)【情境再现】
甲、乙两个含角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接,如图③所示,交于E,交于F,通过证明,可得.
请你证明:.
【迁移应用】
延长分别交所在直线于点P,D,如图④,猜想并证明与的位置关系.
【拓展延伸】
小亮将图②中的甲、乙换成含角的直角三角尺如图⑤,按图⑤作出示意图,并连接,如图⑥所示,其他条件不变,请你猜想并证明与的数量关系.
【答案】证明见详解;垂直;
【详解】
【分析】
证明,即可得出结论;通过,可以求出,得出结论;证明,得出,得出结论;
【详解】
证明: ,
,
,
,
,
,
;
迁移应用:,
证明: ,
,
,
,
,
,
,
;
拓展延伸:,
证明:在中,,
在中,,
,
由上一问题可知,,
,
,
.
【点睛】
本题考查旋转变换,涉及知识点:全等三角形的判定与性质,相似三角形的判定与性质、锐角三角函数、等角的余角相等,解题关键结合图形灵活应用相关的判定与性质.
7.(·辽宁锦州·中考真题)在中,,点D在线段上,连接并延长至点E,使,过点E作,交直线于点F.
(1)如图1,若,请用等式表示与的数量关系:____________.
(2)如图2.若,完成以下问题:
①当点D,点F位于点A的异侧时,请用等式表示之间的数量关系,并说明理由;
②当点D,点F位于点A的同侧时,若,请直接写出的长.
【答案】(1)
(2)①;②或;
【详解】
【分析】
(1)过点C作CG⊥AB于G,先证明△EDF≌△CDG,得到,然后等腰三角形的性质和含30度直角三角形的性质,即可求出答案;
(2)①过点C作CH⊥AB于H,与(1)同理,证明△EDF≌△CDH,然后证明是等腰直角三角形,即可得到结论;
②过点C作CG⊥AB于G,与(1)同理,得△EDF≌△CDG,然后得到是等腰直角三角形,利用勾股定理解直角三角形,即可求出答案.
(1)
解:过点C作CG⊥AB于G,如图,
∵,
∴,
∵,,
∴△EDF≌△CDG,
∴;
∵在中,,,
∴,
∴,
∴;
故答案为:;
(2)
解:①过点C作CH⊥AB于H,如图,
与(1)同理,可证△EDF≌△CDH,
∴,
∴,
在中,,,
∴是等腰直角三角形,
∴,
∴是等腰直角三角形,
∴,
∴;
②如图,过点C作CG⊥AB于G,
与(1)同理可证,△EDF≌△CDG,
∴,
∵,
当点F在点A、D之间时,有
∴,
与①同理,可证是等腰直角三角形,
∴;
当点D在点A、F之间时,如图:
∴,
与①同理,可证是等腰直角三角形,
∴;
综合上述,线段的长为或.
【点睛】
本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,正确得到三角形全等.
8.(·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得
(1)如图1,延长到点,使得,连接,,若,求证:;
(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
【答案】(1)见详解
(2);证明见详解
【详解】
【分析】
(1)先利用已知条件证明,得出,推出,再由即可证明;
(2)延长BC到点M,使CM=CB,连接EM,AM,先证,推出,通过等量代换得到,利用平行线的性质得出,利用直角三角形斜边中线等于斜边一半即可得到.
(1)
证明:在和中,
,
∴ ,
∴ ,
∴ ,
∵,
∴.
(2)
解:补全后的图形如图所示,,证明如下:
延长BC到点M,使CM=CB,连接EM,AM,
∵,CM=CB,
∴ 垂直平分BM,
∴,
在和中,
,
∴ ,
∴ ,,
∵,
∴ ,
∴ ,
∵,
∴ ,
∴ ,即,
∵,
∴ ,
∴ .
【点睛】
本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明是解题的关键.
9.(·福建·中考真题)已知,AB=AC,AB>BC.
(1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
(2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
(3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若,求∠ADB的度数.
【答案】(1)见详解
(2),见详解
(3)30°
【详解】
【分析】
(1)先证明四边形ABDC是平行四边形,再根据AB=AC得出结论;(2)先证出,再根据三角形内角和,得到,等量代换即可得到结论;(3)在AD上取一点M,使得AM=CB,连接BM,证得,得到,设,,则,得到α+β的关系即可.
(1)
∵,
∴AC=DC,
∵AB=AC,
∴∠ABC=∠ACB,AB=DC,
∵CB平分∠ACD,
∴,
∴,
∴,
∴四边形ABDC是平行四边形,
又∵AB=AC,
∴四边形ABDC是菱形;
(2)
结论:.
证明:∵,
∴,
∵AB=AC,
∴,
∴,
∵,
∴,
∵,
∴,
∴;
(3)
在AD上取一点M,使得AM=CB,连接BM,
∵AB=CD,,
∴,
∴BM=BD,,
∴,
∵,
∴,
设,,则,
∵CA=CD,
∴,
∴,
∴,
∴,
∵,
∴,
∴,即∠ADB=30°.
【点睛】
本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.
10.(·山东威海·中考真题)回顾:用数学的思维思考
(1)如图1,在△ABC中,AB=AC.
①BD,CE是△ABC的角平分线.求证:BD=CE.
②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
(从①②两题中选择一题加以证明)
(2)猜想:用数学的眼光观察
经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
(3)探究:用数学的语言表达
如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
【答案】(1)见详解
(2)添加条件CD=BE,见详解
(3)能,0<CF<
【详解】
【分析】
(1)①利用ASA证明△ABD≌△ACE.
②利用SAS证明△ABD≌△ACE.
(2)添加条件CD=BE,证明AC+CD=AB+BE,从而利用SAS证明△ABD≌△ACE.
(3)在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,可证△CBF∽△BAF,运用相似性质,求得CF的长即可.
(1)
①如图1,∵AB=AC,
∴∠ABC=∠ACB,
∵BD,CE是△ABC的角平分线,
∴∠ABD=∠ABC,∠ACE =∠ACB,
∴∠ABD=∠ACE,
∵AB=AC,∠A=∠A,
∴△ABD≌△ACE,
∴BD=CE.
②如图1,∵AB=AC,点D,E分别是边AC,AB的中点,
∴AE=AD,
∵AB=AC,∠A=∠A,
∴△ABD≌△ACE,
∴BD=CE.
(2)
添加条件CD=BE,证明如下:
∵AB=AC,CD=BE,
∴AC+CD=AB+BE,
∴AD=AE,
∵AB=AC,∠A=∠A,
∴△ABD≌△ACE,
∴BD=CE.
(3)
能
在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,
当BD=BF=BA时,E与A重合,
∵∠A=36°,AB=AC,
∴∠ABC=∠ACB=72°,∠A=∠BFA=36°,
∴∠ABF=∠BCF=108°,∠BFC=∠AFB,
∴△CBF∽△BAF,
∴,
∵AB=AC=2=BF, 设CF=x,
∴,
整理,得,
解得x=,x=(舍去),
故CF= x=,
∴0<CF<.
【点睛】
本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,一元二次方程的解法,熟练掌握等腰三角形的性质,三角形全等的判定,三角形相似的判定性质是解题的关键.
11.(·贵州铜仁·中考真题)如图,在四边形中,对角线与相交于点O,记的面积为,的面积为.
(1)问题解决:如图①,若AB//CD,求证:
(2)探索推广:如图②,若与不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
(3)拓展应用:如图③,在上取一点E,使,过点E作交于点F,点H为的中点,交于点G,且,若,求值.
【答案】(1)见详解;(2)(1)中的结论成立,理由见详解:(3)
【详解】
【分析】
(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,求出,然后根据三角形面积公式求解即可;
(2)同(1)求解即可;
(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,先证明△OEF≌△OCD,得到OD=OF,证明△OEF∽△OAM,得到,设,则,证明△OGF∽△OHN,推出,,则,由(2)结论求解即可.
【详解】
解:(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
∴,
∴,
,
∵∠DOE=∠BOF,
∴;
∴;
(2)(1)中的结论成立,理由如下:
如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
∴,
∴,
,
∵∠DOE=∠BOF,
∴;
∴;
(3)如图所示,过点A作交OB于M,取BM中点N,连接HN,
∵,
∴∠ODC=∠OFE,∠OCD=∠OEF,
又∵OE=OC,
∴△OEF≌△OCD(AAS),
∴OD=OF,
∵,
∴△OEF∽△OAM,
∴,
设,则,
∵H是AB的中点,N是BM的中点,
∴HN是△ABM的中位线,
∴,
∴△OGF∽△OHN,
∴,
∵OG=2GH,
∴,
∴,
∴,,
∴,
由(2)可知.
【点睛】
本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.
12.(·湖北武汉·中考真题)已知是的角平分线,点E,F分别在边,上,,,与的面积之和为S.
(1)填空:当,,时,
①如图1,若,,则_____________,_____________;
②如图2,若,,则_____________,_____________;
(2)如图3,当时,探究S与m、n的数量关系,并说明理由:
(3)如图4,当,,,时,请直接写出S的大小.
【答案】(1)①,25;②4;
(2)S=
(3)S=
【详解】
【分析】
(1)①先证四边形DECF为正方形,再证△ABC为等腰直角三角形,根据CD平分∠ACB,得出CD⊥AB,且AD=BD=m,然后利用三角函数求出BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5即可;②先证四边形DECF为正方形,利用直角三角形两锐角互余求出∠A=90°-∠B=30°,利用30°直角三角形先证求出DE=,利用三角函数求出AE=ADcos30°=6,DF=DE=,BF=DFtan30°=2,BD=DF÷sin60°=4即可;
(2)过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,先证四边形DGCH为正方形,再证△DFG≌△DEH(ASA)与△DBG≌△DIH(SAS),然后证明∠IDA=180°-∠A-∠DIH=90°即可;
(3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,先证明△DQF≌△DPE,△DBQ≌△DRP,再证△DBF≌△DRE,求出∠ADR=∠ADE+∠BDF=180°-∠FDE=60°即可.
(1)
解:①∵,,,是的角平分线,
∴四边形DECF为矩形,DE=DF,
∴四边形DECF为正方形,
∵,
∴∠A=90°-∠B=45°=∠B,
∴△ABC为等腰直角三角形,
∵CD平分∠ACB,
∴CD⊥AB,且AD=BD=m,
∵,
∴BD=n=,
∴BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5,ED=DF=5,
∴S= ;
故答案为,25;
②∵,,,是的角平分线,
∴四边形DECF为矩形,DE=DF,
∴四边形DECF为正方形,
∵,
∴∠A=90°-∠B=30°,
∴DE=,AE=ADcos30°=6,DF=DE=,
∵∠BDF=90°-∠B=30°,
∴BF=DFtan30°=2,
∴BD=DF÷sin60°=4,
∴BD=n=4,
∴S=,
故答案为:4;;
(2)
解:过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,
∴∠DHC=∠DGC=∠GCH=90°,
∴四边形DGCH为矩形,
∵是的角平分线,DH⊥AC,DG⊥BC,
∴DG=DH,
∴四边形DGCH为正方形,
∴∠GDH=90°,
∵,
∴∠FDG+∠GDE=∠GDE+∠EDH=90°,
∴∠FDG=∠EDH,
在△DFG和△DEH中,
,
∴△DFG≌△DEH(ASA)
∴FG=EH,
在△DBG和△DIH中,
,
∴△DBG≌△DIH(SAS),
∴∠B=∠DIH,DB=DI=n,
∵∠DIH+∠A=∠B+∠A=90°,
∴∠IDA=180°-∠A-∠DIH=90°,
∴S△ADI=,
∴S=;
(3)
过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,
∵是的角平分线,DP⊥AC,DQ⊥BC,
∴DP=DQ,
∵∠ACB=60°
∴∠QDP=120°,
∵,
∴∠FDQ+∠FDP=∠FDP+∠EDP=120°,
∴∠FDQ=∠EDP,
在△DFQ和△DEP中,
,
∴△DFQ≌△DEP(ASA)
∴DF=DE,∠QDF=∠PDE,
在△DBQ和△DRP中,
,
∴△DBQ≌△DRP(SAS),
∴∠BDQ=∠RDP,DB=DR,
∴∠BDF=∠BDQ+∠FDQ=∠RDP+∠EDP=∠RDE,
∵DB=DE,DB=DR,
∴△DBF≌△DRE,
∴∠ADR=∠ADE+∠BDF=180°-∠FDE=60°,
∴S=S△ADR=.
【点睛】
本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键.
13.(·黑龙江·中考真题)和都是等边三角形.
(1)将绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有(或)成立;请证明.
(2)将绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
(3)将绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
【答案】(1)证明见详解
(2)图②结论:,证明见详解
(3)图③结论:
【详解】
【分析】
(1)由△ABC是等边三角形,得AB=AC,再因为点P与点A重合,所以PB=AB,PC=AC,PA=0,即可得出结论;
(2)在BP上截取,连接AF,证明(SAS),得,再证明(SAS),得,,然后证明是等边三角形,得,即可得出结论;
(3)在CP上截取,连接AF,证明(SAS),得,再证明(SAS),得出,,然后证明是等边三角形,得,即可得出结论:.
(1)
证明:∵△ABC是等边三角形,
∴AB=AC,
∵点P与点A重合,
∴PB=AB,PC=AC,PA=0,
∴或;
(2)
解:图②结论:
证明:在BP上截取,连接AF,
∵和都是等边三角形,
∴,,
∴,
∴,
∴(SAS),
∴,
∵AC=AB,CP=BF,
∴(SAS),
∴,,
∴,
∴,
∴是等边三角形,
∴,
∴;
(3)
解:图③结论:,
理由:在CP上截取,连接AF,
∵和都是等边三角形,
∴,,
∴,
∴,
∴(SAS),
∴,
∵AB=AC,BP=CF,
∴(SAS),
∴,,
∴,
∴,
∴是等边三角形,
∴,
∴,
即.
【点睛】
本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.
14.(·陕西·中考真题)问题提出
(1)如图1,是等边的中线,点P在的延长线上,且,则的度数为__________.
问题探究
(2)如图2,在中,.过点A作,且,过点P作直线,分别交于点O、E,求四边形的面积.
问题解决
(3)如图3,现有一块型板材,为钝角,.工人师傅想用这块板材裁出一个型部件,并要求.工人师傅在这块板材上的作法如下:
①以点C为圆心,以长为半径画弧,交于点D,连接;
②作的垂直平分线l,与于点E;
③以点A为圆心,以长为半径画弧,交直线l于点P,连接,得.
请问,若按上述作法,裁得的型部件是否符合要求?请证明你的结论.
【答案】(1)
(2)
(3)符合要求,理由见详解
【详解】
【分析】
(1)利用等腰三角形的判定及性质,结合三角形内角和,先求出即可;
(2)连接.先证明出四边形是菱形.利用菱形的性质得出,由,得出.根据,得,,即可求出,再求出,利用即可求解;
(3)由作法,知,根据,得出.以为边,作正方形,连接.得出.根据l是的垂直平分线,证明出为等边三角形,即可得出结论.
(1)
解:,
,
,
,
解得:,
,
,
故答案为:;
(2)
解:如图2,连接.
图2
∵,
∴四边形是菱形.
∴.
∵,
∴.
∵,
∴.
∴.
∵,
∴.
∴.
∴.
(3)
解:符合要求.
由作法,知.
∵,
∴.
如图3,以为边,作正方形,连接.
图3
∴.
∵l是的垂直平分线,
∴l是的垂直平分线.
∴.
∴为等边三角形.
∴,
∴,
∴.
∴裁得的型部件符合要求.
【点睛】
本题考查了等边三角形的性质,等腰三角形的判定及性质、三角形内角和定理、菱形的判定及性质、锐角三角函数、正方形、垂直平分线,解题的关键是要灵活运用以上知识点进行求解,涉及知识点较多,题目较难.
15.(·湖南岳阳·中考真题)如图,和的顶点重合,,,,.
(1)特例发现:如图1,当点,分别在,上时,可以得出结论:______,直线与直线的位置关系是______;
(2)探究证明:如图2,将图1中的绕点顺时针旋转,使点恰好落在线段上,连接,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
(3)拓展运用:如图3,将图1中的绕点顺时针旋转,连接、,它们的延长线交于点,当时,求的值.
【答案】(1) ,垂直
(2)成立,理由见详解
(3)
【详解】
【分析】
(1)解直角三角形求出,,可得结论;
(2)结论不变,证明,推出,,可得结论;
(3)如图3中,过点作于点,设交于点,过点作于点求出,,可得结论.
(1)
解:在中,,,,
∴,
在中,,,
∴,
∴,,
∴,此时,
故答案为:,垂直;
(2)
结论成立.
理由:∵,
∴,
∵,,
∴,
∴,
∴,,
∵,
∴,
∴,
∵,
∴,
∴;
(3)
如图3中,过点作于点,设交于点,过点作于点.
∵,,
∴,
∴.
∵,
∴,,
当时,四边形是矩形,
∴,,
设,则,,
∵,
∴,
∴,
∴,
∴,
∴,
∴,
∴,
∴.
【点睛】
本题属于三角形综合题,考查了解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.
16.(·湖北十堰·中考真题)已知,在内部作等腰,,.点为射线上任意一点(与点不重合),连接,将线段绕点逆时针旋转得到线段,连接并延长交射线于点.
(1)如图1,当时,线段与的数量关系是_________;
(2)如图2,当时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;
(3)若,,,过点作,垂足为,请直接写出的长(用含有的式子表示).
【答案】(1)BF=CF
(2)成立;理由见详解
(3)或PD=0或
【详解】
【分析】
(1)连接AF,先根据“SAS”证明,得出,再证明,即可得出结论;
(2)连接AF,先说明,然后根据“SAS”证明,得出,再证明,即可得出结论;
(3)先根据,AB=AC,得出△ABC为等边三角形,再按照,,三种情况进行讨论,得出结果即可.
(1)
解:BF=CF;理由如下:
连接AF,如图所示:
根据旋转可知,,AE=AD,
∵∠BAC=90°,
∴,,
∴,
∵AC=AB,
∴(SAS),
∴,
∴,
∵在Rt△ABF与Rt△ACF中,
∴(HL),
∴BF=CF.
故答案为:BF=CF.
(2)
成立;理由如下:
连接AF,如图所示:
根据旋转可知,,AE=AD,
∵,
∴,,
∴,
∵AC=AB,
∴,
∴,
∴,
∵在Rt△ABF与Rt△ACF中,
∴(HL),
∴BF=CF.
(3)
∵,AB=AC,
∴△ABC为等边三角形,
∴,,
当时,连接AF,如图所示:
根据详解(2)可知,,
∴,
∵,
,
即,
,
根据详解(2)可知,,
∴,
∴,
,
,
∵,
∴,
∴,
,
∴;
当时,AD与AC重合,如图所示:
∵,,
∴△ADE为等边三角形,
∴∠ADE=60°,
∵,
∴,
∴此时点P与点D重合,;
当时,连接AF,如图所示:
根据详解(2)可知,,
∴,
∵,
,
即,
,
根据详解(2)可知,,
∴,
∴,
∵,
,
∵,
∴,
∴,
,
∴;
综上分析可知,或PD=0或.
17.(·湖南湘潭·中考真题)在中,,,直线经过点,过点、分别作的垂线,垂足分别为点、.
(1)特例体验:
如图①,若直线,,分别求出线段、和的长;
(2)规律探究:
①如图②,若直线从图①状态开始绕点旋转,请探究线段、和的数量关系并说明理由;
②如图③,若直线从图①状态开始绕点A顺时针旋转,与线段相交于点,请再探线段、和的数量关系并说明理由;
(3)尝试应用:
在图③中,延长线段交线段于点,若,,求.
【答案】(1)BD=1;CE=1;DE=2
(2)DE=CE+BD;理由见详解;②BD=CE+DE;理由见详解
(3)
【详解】
【分析】
(1)先根据得出,根据,得出,,再根据,求出,,
即可得出,最后根据三角函数得出,,即可求出;
(2)①DE=CE+BD;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;
②BD=CE+DE;根据题意,利用“AAS”证明,得出AD=CE,BD=AE,即可得出结论;
(3)在Rt△AEC中,根据勾股定理求出,根据,得出,代入数据求出AF,根据AC=5,算出CF,即可求出三角形的面积.
(1)
解:∵,,
∴,
∵,
∴,,
∵BD⊥AE,CE⊥DE,
∴,
∴,,
∴,
∴,
,
∴.
(2)
DE=CE+BD;理由如下:
∵BD⊥AE,CE⊥DE,
∴,
∴,
∵,
∴,
∴,
∵AB=AC,
∴,
∴AD=CE,BD=AE,
∴DE=AD+AE=CE+BD,
即DE=CE+BD;
②BD=CE+DE,理由如下:
∵BD⊥AE,CE⊥DE,
∴,
∴,
∵,
∴,
∴,
∵AB=AC,
∴,
∴AD=CE,BD=AE,
∴BD=AE=AD+DE=CE+DE,
即BD=CE+DE.
(3)
根据详解(2)可知,AD=CE=3,
∴,
在Rt△AEC中,根据勾股定理可得:,
∵BD⊥AE,CE⊥AE,
∴,
∴,
即,
解得:,
∴,
∵AB=AC=5,
∴.
【点睛】
本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明,是解题的关键.
18.(·江苏扬州·中考真题)如图1,在中,,点在边上由点向点运动(不与点重合),过点作,交射线于点.
(1)分别探索以下两种特殊情形时线段与的数量关系,并说明理由;
①点在线段的延长线上且;
②点在线段上且.
(2)若.
①当时,求的长;
②直接写出运动过程中线段长度的最小值.
【答案】(1)①②
(2)①②4
【详解】
【分析】
(1)①算出各个内角,发现其是等腰三角形即可推出;
②算出各内角发现其是30°的直角三角形即可推出;
(2)①分别过点A,E作BC的垂线,得到一线三垂直的相似,即,设,,利用30°直角三角形的三边关系,分别表示出,,,,列式求解a即可;
②分别过点A,E作BC的垂线,相交于点G,H,证明可得,然后利用完全平方公式变形得出,求出AE的取值范围即可.
(1)
①如图:
∵在中,,
∴
∵
∴,
在中,
∴
∴
∴;
②如图:
∵
∴,
∴在中,
∴
∴;
(2)
①分别过点A,E作BC的垂线,相交于点H,G,则∠EGD=∠DHA=90°,
∴∠GED+∠GDE=90°,
∵∠HDA+∠GDE=90°,
∴∠GED=∠HDA,
∴,
设,,则,,
在中,,AB=6
则,
在中,,
则
在中,,
∴
∴
由得,
即
解得:,(舍)
故;
②分别过点A,E作BC的垂线,相交于点G,H,则∠EHD=∠AGD=90°,
∵∠ADE=90°,
∴∠EDH=90°-∠ADG=∠DAG,
∵∠EHD=∠AGD=90°,
∴,
∴,
∴,
∵∠BAC=90°,∠C=60°,
∴∠B=30°,
∴,
∴,
∴=,
∵
∴,
∴,
∵,
∴,
∵,
∴,
∴,
故AE的最小值为4.
【点睛】
本题考查了直角三角形的性质,三角形相似的判定和性质,等腰三角形的性质,一线三垂直相似模型,垂线段最短,熟练掌握直角三角形的性质,一线三垂直模型,垂线段最短原理是解题的关键.
19.(·河北·中考真题)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.
(1)求证:△PQM≌△CHD;
(2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
【答案】(1)见详解
(2)①;
②;
③
【详解】
【分析】
(1)先证明四边形是矩形,再根据算出CD长度,即可证明;
(2)①平移扫过部分是平行四边形,旋转扫过部分是扇形,分别算出两块面积相加即可;
②运动分两个阶段:平移阶段:;旋转阶段:取刚开始旋转状态,以PM为直径作圆,H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T;设,利用算出,,,利用算出DG,利用算出GT,最后利用算出,发现,从而得到,度数,求出旋转角,最后用旋转角角度计算所用时间即可;
③分两种情况:当旋转角<30°时,DE在DH的左侧,当旋转角≥30°时,DE在DH上或右侧,证明,结合勾股定理,可得,即可得CF与d的关系.
(1)
∵,
∴
则在四边形中
故四边形为矩形
,
在中,
∴,
∵
∴;
(2)
①过点Q作于S
由(1)得:
在中,
∴
平移扫过面积:
旋转扫过面积:
故边PQ扫过的面积:
②运动分两个阶段:平移和旋转
平移阶段:
旋转阶段:
由线段长度得:
取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T
设,则
在中:
设,则,,
,,
∵DM为直径
∴
在中 :
在中:
在中:
∴,
PQ转过的角度:
s
总时间:
③设CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
当旋转角<30°时,DE在DH的左侧,如图:
∵∠EDF=30°,∠C=30°,
∴∠EDF=∠C,
又∵∠DEF=∠CED,
∴,
∴,即,
∴,
∵在中,,
∴,
∴
当旋转角≥30°时,DE在DH上或右侧,如图:CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
同理:可得
综上所述:.
【点睛】
本题考查动点问题,涉及到平移,旋转,矩形,解直角三角形,圆的性质,相似三角形的判定和性质;注意第(2)问第②小题以PM为直径作圆算出是难点,第(2)问第③小题用到相似三角形的判定和性质.
20.(·山西·中考真题)综合与实践
问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:
(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;
问题解决:
(2)如图②,在三角板旋转过程中,当时,求线段CN的长;
(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.
【答案】(1)四边形AMDN为矩形;理由见详解;(2);(3).
【详解】
【分析】
(1)由三角形中位线定理得到MD∥AC,证明∠A=∠AMD=∠MDN=90°,即可证明结论;
(2)证明△NDC是等腰三角形,过点N作NG⊥BC于点G,证明△CGN∽△CAB,利用相似三角形的性质即可求解;
(3)延长ND,使DH=DN,证明△BDH≌△CDN,推出BH=CN,∠DBH=∠C,证明∠MBH=90°,设AM=AN=x,在Rt△BMH中,利用勾股定理列方程,解方程即可求解.
【详解】
解:(1)四边形AMDN为矩形.
理由如下:∵点M为AB的中点,点D为BC的中点,
∴MD∥AC,
∴∠AMD+∠A=180°,
∵∠A=90°,
∴∠AMD=90°,
∵∠EDF=90°,
∴∠A=∠AMD=∠MDN=90°,
四边形AMDN为矩形;
(2)在Rt△ABC中,∠A=90°,AB=6,AC=8,
∴∠B+∠C=90°,.
∵点D是BC的中点,
∴CD=BC=5.
∵∠EDF=90°,
∴∠MDB+∠1=90°.
∵∠B=∠MDB,
∴∠1=∠C.
∴ND=NC.
过点N作NG⊥BC于点G,则∠CGN=90°.
∴CG=CD=.
∵∠C=∠C,∠CGN=∠CAB=90°,
∴△CGN∽△CAB.
∴,即,
∴;
(3)延长ND至H,使DH=DN,连接MH,NM,BH,
∵MD⊥HN,∴MN=MH,
∵D是BC中点,
∴BD=DC,
又∵∠BDH=∠CDN,
∴△BDH≌△CDN,
∴BH=CN,∠DBH=∠C,
∵∠BAC=90°,
∵∠C+∠ABC=90°,
∴∠DBH+∠ABC=90°,
∴∠MBH=90°,
设AM=AN=x,则BM=6-x,BH=CN=8-x,MN=MH=x,
在Rt△BMH中,BM2+BH2=MH2,
∴(6-x)2+(8-x)2=(x)2,
解得x=,
∴线段AN的长为.
【点睛】
本题考查了全等三角形的判定和性质,相似三角形的判定和性质,矩形的判定,勾股定理,解第(3)问的关键是学会利用参数构建方程解决问题.
21.(·湖北武汉·中考真题)问题提出:如图(1),中,,是的中点,延长至点,使,延长交于点,探究的值.
(1)先将问题特殊化.如图(2),当时,直接写出的值;
(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.
问题拓展:如图(3),在中,,是的中点,是边上一点,,延长至点,使,延长交于点.直接写出的值(用含的式子表示).
【答案】(1)[问题提出](1);(2)见详解
(2)[问题拓展]
【详解】
【分析】
[问题探究](1)根据等边三角形的性质结合已知条件,求得,,根据含30度角的直角三角形的性质,可得,即可求解;
(2)取的中点,连接.证明,可得,根据,证明,根据相似三角形的性质可得,进而可得;
[问题拓展]方法同(2)证明,得出,,证明,得到,进而可得 .
(1)
[问题探究]:(1)如图,
中,,是的中点,,
是等边三角形,
,,
,
,
,
,
,
,
,
.
(2)证明:取的中点,连接.
∵是的中点,
∴,.
∵,
∴,
∴.
∵,
∴.
∴.
∴.
∴.
∴.
∵,
∴.
∴.
∴.
∴.
(2)
[问题拓展]如图,取的中点,连接.
∵是的中点,
∴,.
∵,
∴,
∴.
∵,
∴.
∴.
∴.
∴.
,
∴.
∵,
∴.
∴.
∴.
∴.
.
【点睛】
本题考查了等边三角形的性质,全等三角形的性质与判定,相似三角形的性质与判定,等边对等角,掌握相似三角形的性质与判定是解题的关键.
22.(·江西·中考真题)问题提出:某兴趣小组在一次综合与实践活动中提出这样一个问题:将足够大的直角三角板的一个顶点放在正方形中心O处,并绕点O逆时针旋转,探究直角三角板与正方形重叠部分的面积变化情况(已知正方形边长为2).
(1)操作发现:如图1,若将三角板的顶点P放在点O处,在旋转过程中,当与重合时,重叠部分的面积为__________;当与垂直时,重叠部分的面积为__________;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积与S的关系为__________;
(2)类比探究:若将三角板的顶点F放在点O处,在旋转过程中,分别与正方形的边相交于点M,N.
①如图2,当时,试判断重叠部分的形状,并说明理由;
②如图3,当时,求重叠部分四边形的面积(结果保留根号);
(3)拓展应用:若将任意一个锐角的顶点放在正方形中心O处,该锐角记为(设),将绕点O逆时针旋转,在旋转过程中,的两边与正方形的边所围成的图形的面积为,请直接写出的最小值与最大值(分别用含的式子表示),
(参考数据:)
【答案】(1)1,1,
(2)①是等边三角形,理由见详解;②
(3)
【详解】
【分析】
(1)如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.利用全等三角形的性质证明即可;
(2)①结论:△OMN是等边三角形.证明OM=ON,可得结论;
②如图3中,连接OC,过点O作OJ⊥BC于点J.证明△OCM≌△OCN(SAS),推出∠COM=∠CON=30°,解直角三角形求出OJ,即可解决问题;
(3)如图4-1中,过点O作OQ⊥BC于点Q,当BM=CN时,△OMN的面积最小,即S2最小.如图4-2中,当CM=CN时,S2最大.分别求解即可.
(1)
如图1,若将三角板的顶点P放在点O处,在旋转过程中,当OF与OB重合时,OE与OC重合,此时重叠部分的面积=△OBC的面积=正方形ABCD的面积=1;
当OF与BC垂直时,OE⊥BC,重叠部分的面积=正方形ABCD的面积=1;
一般地,若正方形面积为S,在旋转过程中,重叠部分的面积S1与S的关系为S1=S.
理由:如图1中,设OF交AB于点J,OE交BC于点K,过点O作OM⊥AB于点M,ON⊥BC于点N.
∵O是正方形ABCD的中心,
∴OM=ON,
∵∠OMB=∠ONB=∠B=90°,
∴四边形OMBN是矩形,
∵OM=ON,
∴四边形OMBN是正方形,
∴∠MON=∠EOF=90°,
∴∠MOJ=∠NOK,
∵∠OMJ=∠ONK=90°,
∴△OMJ≌△ONK(AAS),
∴S△PMJ=S△ONK,
∴S四边形OKBJ=S正方形OMBN=S正方形ABCD,
∴S1=S.
故答案为:1,1,S1=S.
(2)
①如图2中,结论:△OMN是等边三角形.
理由:过点O作OT⊥BC,
∵O是正方形ABCD的中心,
∴BT=CT,
∵BM=CN,
∴MT=TN,
∵OT⊥MN,
∴OM=ON,
∵∠MON=60°,
∴△MON是等边三角形;
②如图3中,连接OC,过点O作OJ⊥BC于点J.
∵CM=CN,∠OCM=∠OCN,OC=OC,
∴△OCM≌△OCN(SAS),
∴∠COM=∠CON=30°,
∴∠OMJ=∠COM+∠OCM=75°,
∵OJ⊥CB,
∴∠JOM=90°-75°=15°,
∵BJ=JC=OJ=1,
∴JM=OJ•tan15°=2-,
∴CM=CJ-MJ=1-(2-)=-1,
∴S四边形OMCN=2××CM×OJ=-1.
(3)
如图4,将沿翻折得到,则,此时则当在上时,比四边形的面积小,
设,则当最大时,最小,
,即时,最大,
此时垂直平分,即,则
如图5中,过点O作OQ⊥BC于点Q,
,
BM=CN
当BM=CN时,△OMN的面积最小,即S2最小.
在Rt△MOQ中,MQ=OQ•tan=tan,
∴MN=2MQ=2tan,
∴S2=S△OMN=×MN×OQ=tan.
如图6中,同理可得,当CM=CN时,S2最大.
则△COM≌△CON,
∴∠COM=,
∵∠COQ=45°,
∴∠MOQ=45°-,
QM=OQ•tan(45°-)=tan(45°-),
∴MC=CQ-MQ=1-tan(45°-),
∴S2=2S△CMO=2××CM×OQ=1-tan(45°-).
【点睛】
本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,四边形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.
23.(·重庆·中考真题)在中,,,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90°得到线段,连接,.
(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;
(2)如图2,的延长线交于点M,点N在上,且,求证: ;
(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值.
【答案】(1)2
(2)见详解
(3)
【详解】
【分析】
(1)根据已知条件可得为的中点,证明,进而根据直角三角形斜边上的中线等于斜边的一半即可求解;
(2)过点作交的延长线于点,证明 ,,可得,进而根据,即可得出结论,
(3)根据(2)可知,当点在线段上运动时,点在平行于的线段上运动,根据题意作出图形,根据点到圆上的距离求最值即可求解.
(1)
如图,连接
将线段绕点E顺时针旋转90°得到线段,
是等腰直角三角形,
P为FG的中点,
,
,
,
,D为的中点,,
,,
,
在中,;
(2)
如图,过点作交的延长线于点,
,
,
,
,
是等腰直角三角形,
,
,
在与中,
,
,
,
,
又,,
,
,
,
,
,
又,
,
,
,
,
,
,
;
(3)
由(2)可知,
则当点在线段上运动时,点在平行于的线段上运动,
将沿翻折至所在平面内,得到,
E为的中点,
,
,
则点在以为圆心为半径的圆上运动,当三点共线时,最小,
如图,当运动到与点重合时,取得最小值,.
如图,当点运动到与点重合时,取得最小值,
此时,则.
综上所述,的最小值为.
【点睛】
本题考查了等腰三角形的性质与判定,直角三角形斜边上的中线,勾股定理,全等三角形的性质与判定,轴对称线的性质,点到圆上一点距离最值问题,正确的添加辅助线是解题的关键.
24.(·浙江宁波·中考真题)
(1)如图1,在中,D,E,F分别为上的点,交于点G,求证:.
(2)如图2,在(1)的条件下,连接.若,求的值.
(3)如图3,在中,与交于点O,E为上一点,交于点G,交于点F.若平分,求的长.
【答案】(1)证明见详解
(2)
(3)
【详解】
【分析】
(1)利用,证明,利用相似比即可证明此问;
(2)由(1)得,,得出是等腰三角形,利用三角形相似即可求出 的值;
(3)遵循第(1)、(2)小问的思路,延长交于点M,连接,作,垂足为N.构造出等腰三角形、含30°、45°角的特殊直角三角形,求出、的值,即可得出的长.
(1)
解:∵,
∴,
∴,
∴.
∵,
∴.
(2)
解:由(1)得,
∵,
∴.
∵,
∴.
∵,
∴.
∴.
(3)
解:如图,延长交于点M,连接,作,垂足为N.
在中,.
∵,
∴由(1)得,
∵,
∴,
∴.
∵,
∴,
∴.
∵平分,
∴,
∴.
∴.在中,.
∵,
∴,
∴.
【点睛】
本题考查了相似三角形的性质及判定、等腰三角形的性质及判定、解特殊的直角三角形等知识,遵循构第(1)、(2)小问的思路,构造出等腰三角形和特殊的直角三角形是解决本题的关键.
相关试卷
这是一份专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。
这是一份专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。
这是一份2022年中考数学真题考点分类专练专题33四边形压轴综合问题(含解析),共87页。试卷主要包含了解答题等内容,欢迎下载使用。