终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

    立即下载
    加入资料篮
    初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】第1页
    初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】第2页
    初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】第3页
    还剩74页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】

    展开

    这是一份初中数学中考复习 专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【解析版】,共77页。试卷主要包含了解答题等内容,欢迎下载使用。
    备战2023年中考数学必刷真题考点分类专练(全国通用)
    专题32三角形压轴综合问题
    一、解答题
    1.(2022·青海·中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.
    (1)问题发现:
    如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;

           图1
    (2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.

           图2
    【答案】(1)见解析
    (2)∠DCE=90°;AE=AD+DE=BE+2CM
    【解析】
    【分析】
    (1)先判断出∠BAD=∠CAE,进而利用SAS判断出△BAD≌△CAE,即可得出结论;
    (2)同(1)的方法判断出△BAD≌△CAE,得出AD=BE,∠ADC=∠BEC,最后用角的差,即可得出结论.
    (1)
    证明:∵△ABC和△ADE是顶角相等的等腰三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE,
    ∴∠BAC-∠CAD=∠DAE-∠CAD,
    ∴∠BAD=∠CAE.
    在△BAD和△CAE中,
    AB=AC∠BAD=∠CAEAD=AE,
    ∴△BAD≌△CAESAS,
    ∴BD=CE.
    (2)
    解:∠AEB=90°,AE=BE+2CM,
    理由如下:由(1)的方法得,△ACD≌△BCE,
    ∴AD=BE,∠ADC=∠BEC,
    ∵△CDE是等腰直角三角形,
    ∴∠CDE=∠CED=45°,
    ∴∠ADC=180°-∠CDE=135°,
    ∴∠BEC=∠ADC=135°,
    ∴∠AEB=∠BEC-∠CED=135°-45°=90°.
    ∵CD=CE,CM⊥DE,
    ∴DM=ME.
    ∵∠DCE=90°,
    ∴DM=ME=CM,
    ∴DE=2CM.
    ∴AE=AD+DE=BE+2CM.
    【点睛】
    此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰三角形,等边三角形,等腰直角三角形的性质,判断出△ACD≌△BCE是解本题的关键.
    2.(2022·辽宁大连·中考真题)综合与实践
    问题情境:
    数学活动课上,王老师出示了一个问题:如图1,在△ABC中,D是AB上一点,∠ADC=∠ACB.求证∠ACD=∠ABC.
    独立思考:
    (1)请解答王老师提出的问题.
    实践探究:
    (2)在原有问题条件不变的情况下,王老师增加下面的条件,并提出新问题,请你解答.“如图2,延长CA至点E,使CE=BD,BE与CD的延长线相交于点F,点G,H分别在BF,BC上,BG=CD,∠BGH=∠BCF.在图中找出与BH相等的线段,并证明.”
    问题解决:
    (3)数学活动小组河学时上述问题进行特殊化研究之后发现,当∠BAC=90°时,若给出△ABC中任意两边长,则图3中所有已经用字母标记的线段长均可求,该小组提出下面的问题,请你解答.“如图3,在(2)的条件下,若∠BAC=90°,AB=4,AC=2,求BH的长.”

    【答案】(1)证明见解析;(2)证明见解析;(3)BH=173.
    【解析】
    【分析】
    (1)利用三角形的内角和定理可得答案;
    (2)如图,在BC上截取BN=CF, 证明△CEF≌△BDN, 再证明EF=DN,∠EFC=∠DNB, 证明△GHB≌△CND, 可得BH=DN, 从而可得结论;
    (3)如图,在BC上截取BN=CF, 同理可得:BH=DN=EF, 利用勾股定理先求解BC=22+42=25, 证明△ADC∽△ACB, 可得AD=1,CD=5, 可得BG=CD=5, 证明△BGH∽△BCF, 可得BF=2BH, 而EF=GH, 可得BE=3BH, 再利用勾股定理求解BE,即可得到答案.
    【详解】
    证明:(1)∵∠ADC=∠ACB,∠A=∠A,
    而∠ACD=180°-∠A-∠ADC,∠ABC=180°-∠A-∠ACB,
    ∴∠ACD=∠ABC,
    (2)BH=EF, 理由如下:
    如图,在BC上截取BN=CF,
    ∵BD=CE,∠ACD=∠ABC,
    ∴△CEF≌△BDN,
    ∴EF=DN,∠EFC=∠DNB,

    ∵ ∠BGH=∠BCF,∠GBN=∠FBC,
    ∴∠BHG=∠BFC,
    ∵∠EFC=∠BND,
    ∴∠BFC=∠DNC,
    ∴∠BHG=∠DNC,
    ∵BG=CD,
    ∴△GHB≌△CND,
    ∴BH=DN,
    ∴BH=EF.
    (3)如图,在BC上截取BN=CF,
    同理可得:BH=DN=EF,

    ∵AC=2,AB=4,∠BAC=90°,
    ∴BC=22+42=25,
    ∵∠DAC=∠BAC,∠ACD=∠ABC,
    ∴△ADC∽△ACB,
    ∴ADAC=ACAB=CDBC,
    ∴AD2=24=CD25,
    ∴AD=1,CD=5,
    ∴BG=CD=5,
    ∵∠GBH=∠FBC,∠BGH=∠BCF,
    ∴△BGH∽△BCF,
    ∴BGBC=GHCF=BHBF=525=12,
    ∴BF=2BH, 而EF=GH,
    ∴BE=3BH,
    ∵AB=4,AD=1,BD=CE,
    ∴BD=CE=3,
    ∴AE=3-2=1, 而∠BAE=∠BAC=90°,
    ∴BE=AB2+AE2=17,
    ∴BH=173.
    【点睛】
    本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,勾股定理的应用,相似三角形的判定与性质,作出适当的辅助线构建全等三角形是解本题的关键.
    3.(2022·山东青岛·中考真题)【图形定义】
    有一条高线相等的两个三角形称为等高三角形.
    例如:如图①.在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D',则△ABC和△A'B'C'是等高三角形.


    【性质探究】
    如图①,用S△ABC,S△A'B'C'分别表示△ABC和△A'B'C'的面积.
    则S△ABC=12BC⋅AD,S△A'B'C'=12B'C'⋅A'D',
    ∵AD=A'D'
    ∴S△ABC:S△A'B'C=BC:B'C'.
    【性质应用】
    (1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=__________;
    (2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=__________,S△CDE=_________;
    (3)如图③,在△ABC中,D,E分别是BC和AB边上的点,若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=__________.
    【答案】(1)3:4
    (2)12;16
    (3)amn
    【解析】
    【分析】
    (1)由图可知△ABD和△ADC是等高三角形,然后根据等高三角形的性质即可得到答案;
    (2)根据BE:AB=1:2,S△ABC=1和等高三角形的性质可求得S△BEC,然后根据CD:BC=1:3和等高三角形的性质可求得S△CDE;
    (3)根据BE:AB=1:m,S△ABC=a和等高三角形的性质可求得S△BEC,然后根据CD:BC=1:n,和等高三角形的性质可求得S△CDE.
    (1)
    解:如图,过点A作AE⊥BC,


    则S△ABD=12BD⋅AE,S△ADC=12DC⋅AE
    ∵AE=AE,
    ∴S△ABD:S△ADC=BD:DC=3:4.
    (2)
    解:∵△BEC和△ABC是等高三角形,
    ∴S△BEC:S△ABC=BE:AB=1:2,
    ∴S△BEC=12S△ABC=12×1=12;
    ∵△CDE和△BEC是等高三角形,
    ∴S△CDE:S△BEC=CD:BC=1:3,
    ∴S△CDE=13S△BEC=13×12=16.
    (3)
    解:∵△BEC和△ABC是等高三角形,
    ∴S△BEC:S△ABC=BE:AB=1:m,
    ∴S△BEC=1mS△ABC=1m×a=am;
    ∵△CDE和△BEC是等高三角形,
    ∴S△CDE:S△BEC=CD:BC=1:n,
    ∴S△CDE=1nS△BEC=1n×am=amn.
    【点睛】
    本题主要考查了等高三角形的定义、性质以及应用性质解题,熟练掌握等高三角形的性质并能灵活运用是解题的关键.
    4.(2022·山东烟台·中考真题)
    (1)【问题呈现】如图1,△ABC和△ADE都是等边三角形,连接BD,CE.求证:BD=CE.
    (2)【类比探究】如图2,△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°.连接BD,CE.请直接写出BDCE的值.
    (3)【拓展提升】如图3,△ABC和△ADE都是直角三角形,∠ABC=∠ADE=90°,且ABBC=ADDE=34.连接BD,CE.
    ①求BDCE的值;
    ②延长CE交BD于点F,交AB于点G.求sin∠BFC的值.
    【答案】(1)见解析
    (2)22
    (3)①35;②45
    【解析】
    【分析】
    (1)证明△BAD≌△CAE,从而得出结论;
    (2)证明△BAD∽△CAE,进而得出结果;
    (3)①先证明△ABC∽△ADE,再证得△CAE∽△BAD,进而得出结果;
    ②在①的基础上得出∠ACE=∠ABD,进而∠BFC=∠BAC,进一步得出结果.
    (1)
    证明:∵△ABC和△ADE都是等边三角形,
    ∴AD=AE,AB=AC,∠DAE=∠BAC=60°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴BD=CE;
    (2)
    解:∵△ABC和△ADE都是等腰直角三角形,
    ∴ABAE=ABAC=12,∠DAE=∠BAC=45°,
    ∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD∽△CAE,
    ∴BDCE=ABAC=12=22;
    (3)
    解:①ABAC=ADDE=34,∠ABC=∠ADE=90°,
    ∴△ABC∽△ADE,
    ∴∠BAC=∠DAE,ABAC=ADAE=35,
    ∴∠CAE=∠BAD,
    ∴△CAE∽△BAD,
    ∴BDCE=ADAE=35 ;
    ②由①得:△CAE∽△BAD,
    ∴∠ACE=∠ABD,
    ∵∠AGC=∠BGF,
    ∴∠BFC=∠BAC,
    ∴sin∠BFC=BCAC=45.
    【点睛】
    本题考查了等腰三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解决问题的关键是熟练掌握“手拉手”模型及其变形.
    5.(2022·广西·中考真题)已知∠MON=α,点A,B分别在射线OM,ON上运动,AB=6.

    (1)如图①,若α=90°,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A',B',D',连接OD,OD'.判断OD与OD'有什么数量关系?证明你的结论:
    (2)如图②,若α=60°,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离:
    (3)如图③,若α=45°,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
    【答案】(1)OD=OD',证明见解析
    (2)33+3
    (3)当OA=OB时,△AOB的面积最大;理由见解析,△AOB面积的最大值为92+9
    【解析】
    【分析】
    (1)根据“直角三角形斜边中线等于斜边一半”可得OD=12AB,OD′=12A′B′,进而得出结论;
    (2)作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,当O运动到O′时,OC最大,求出CD和等边三角形AO′B上的高O′D,进而求得结果;
    (3)作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,取AB的中点C,连接CI并延长交⊙I于O,此时△AOB的面积最大,进一步求得结果.
    (3)以AB为斜边在其右侧作等腰直角三角形ABC,连接OC交AB于点T,在OT上取点E,使OE=BE,连接BE,由(2)可知,当OC⊥AB时,OC最大,当OA=OB时,此时OT最大,即△AOB的面积最大,由勾股定理等进行求解即可.
    (1)
    解:OD=OD',证明如下:
    ∵ ∠AOB=α=90°,AB中点为D,
    ∴OD=12AB,
    ∵D'为A'B'的中点,∠A'OB'=α=90°,
    ∴OD'=12A'B',
    ∵AB=A'B',
    ∴OD=OD';
    (2)
    解:如图1,

    作△AOB的外接圆I,连接CI并延长,分别交⊙I于O′和D,
    当O运动到O′时,OC最大,
    此时△AOB是等边三角形,
    ∴BO′=AB=6,
    OC最大=CO′=CD+DO′=12AB+32BO′=3+33;
    (3)
    解:如图2,作等腰直角三角形AIB,以I为圆心,AI为半径作⊙I,

    ∴AI=22AB=32,∠AOB=12∠AIB=45°,
    则点O在⊙I上,取AB的中点C,连接CI并延长交⊙I于O,
    此时△AOB的面积最大,
    ∵OC=CI+OI=12AB+32=3+32,
    ∴S△AOB最大=12×6×(3+32)=9+92.
    【点睛】
    本题考查了直角三角形性质,等腰三角形性质,确定圆的条件等知识,解决问题的关键是熟练掌握“定弦对定角”的模型.
    6.(2022·山东潍坊·中考真题)【情境再现】
    甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处,将甲绕点O顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC交OG于F,通过证明△OBE≌△OAF,可得OE=OF.
    请你证明:AG=BH.

    【迁移应用】
    延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.
    【拓展延伸】
    小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.
    【答案】证明见解析;垂直;BH=3AG
    【解析】
    【分析】
    证明△BOH≅△AOG,即可得出结论;通过∠BHO=∠AGO,可以求出∠DGH+∠BHO+∠OHG=90°,得出结论AG⊥BH;证明△BOH∽△AOG,得出AGBH=OAOB=33,得出结论;
    【详解】
    证明:∵ AB=AC,AO⊥BC,
    ∴ OA=OB,∠AOB=90°,
    ∵ ∠BOH+∠AOH=90°,∠AOG+∠AOH=90°,
    ∴ ∠BOH=∠AOG,
    ∵ OH=OG,
    ∴ △BOH≅△AOG,
    ∴ AG=BH;
    迁移应用:AG⊥BH,
    证明:∵ △BOH≅△AOG,
    ∴ ∠BHO=∠AGO,
    ∵ ∠DGH+∠AGO=45°,
    ∴ ∠DGH+∠BHO=45°,
    ∵ ∠OHG=45°,
    ∴ ∠DGH+∠BHO+∠OHG=90°,
    ∴ ∠HDG=90°,
    ∴ AG⊥BH;
    拓展延伸:BH=3AG,
    证明:在Rt△AOB中,tan30°=OAOB=33,
    在Rt△HOG中,tan30°=OGOH=33,
    ∴ OAOB=OGOH,
    由上一问题可知,∠BOH=∠AOG,
    ∴ △BOH∽△AOG,
    ∴ AGBH=OAOB=33,
    ∴ BH=3AG.
    【点睛】
    本题考查旋转变换,涉及知识点:全等三角形的判定与性质,相似三角形的判定与性质、锐角三角函数、等角的余角相等,解题关键结合图形灵活应用相关的判定与性质.
    7.(2022·辽宁锦州·中考真题)在△ABC中,AC=BC,点D在线段AB上,连接CD并延长至点E,使DE=CD,过点E作EF⊥AB,交直线AB于点F.

    (1)如图1,若∠ACB=120°,请用等式表示AC与EF的数量关系:____________.
    (2)如图2.若∠ACB=90°,完成以下问题:
    ①当点D,点F位于点A的异侧时,请用等式表示AC,AD,DF之间的数量关系,并说明理由;
    ②当点D,点F位于点A的同侧时,若DF=1,AD=3,请直接写出AC的长.
    【答案】(1)EF=12AC
    (2)①AD+DF=22AC;②42或22;
    【解析】
    【分析】
    (1)过点C作CG⊥AB于G,先证明△EDF≌△CDG,得到EF=CG,然后等腰三角形的性质和含30度直角三角形的性质,即可求出答案;
    (2)①过点C作CH⊥AB于H,与(1)同理,证明△EDF≌△CDH,然后证明△ACH是等腰直角三角形,即可得到结论;
    ②过点C作CG⊥AB于G,与(1)同理,得△EDF≌△CDG,然后得到△ACG是等腰直角三角形,利用勾股定理解直角三角形,即可求出答案.
    (1)
    解:过点C作CG⊥AB于G,如图,

    ∵EF⊥AB,
    ∴∠EFD=∠CGD=90°,
    ∵∠EDF=∠CDG,DE=CD,
    ∴△EDF≌△CDG,
    ∴EF=CG;
    ∵在△ABC中,AC=BC,∠ACB=120°,
    ∴∠A=∠B=12×(180°-120°)=30°,
    ∴CG=12AC,
    ∴EF=12AC;
    故答案为:EF=12AC;
    (2)
    解:①过点C作CH⊥AB于H,如图,

    与(1)同理,可证△EDF≌△CDH,
    ∴DF=DH,
    ∴AD+DF=AD+DH=AH,
    在△ABC中,AC=BC,∠ACB=90°,
    ∴△ABC是等腰直角三角形,
    ∴∠CAH=45°,
    ∴△ACH是等腰直角三角形,
    ∴AH=22AC,
    ∴AD+DF=22AC;
    ②如图,过点C作CG⊥AB于G,

    与(1)同理可证,△EDF≌△CDG,
    ∴DF=DG=1,
    ∵AD=3,
    当点F在点A、D之间时,有
    ∴AG=1+3=4,
    与①同理,可证△ACG是等腰直角三角形,
    ∴AC=2AG=42;
    当点D在点A、F之间时,如图:

    ∴AG=AD-DG=3-1=2,
    与①同理,可证△ACG是等腰直角三角形,
    ∴AC=2AG=22;
    综合上述,线段AC的长为42或22.
    【点睛】
    本题考查了等腰直角三角形的判定和性质,全等三角形的判定和性质,勾股定理解直角三角形,三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确的作出辅助线,正确得到三角形全等.
    8.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.

    (1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;
    (2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.
    【答案】(1)见解析
    (2)CD=CH;证明见解析
    【解析】
    【分析】
    (1)先利用已知条件证明△FCE≅△BCDSAS,得出∠CFE=∠CBD,推出EF∥BD,再由AF⊥EF即可证明BD⊥AF;
    (2)延长BC到点M,使CM=CB,连接EM,AM,先证△MEC≅△BDCSAS,推出ME=BD,通过等量代换得到AM2=AE2+ME2,利用平行线的性质得出∠BHE=∠AEM=90°,利用直角三角形斜边中线等于斜边一半即可得到CD=CH.
    (1)
    证明:在△FCE和△BCD中,
    CE=CD∠FCE=∠BCDCF=CB,
    ∴ △FCE≅△BCDSAS,
    ∴ ∠CFE=∠CBD,
    ∴ EF∥BD,
    ∵AF⊥EF,
    ∴BD⊥AF.
    (2)
    解:补全后的图形如图所示,CD=CH,证明如下:

    延长BC到点M,使CM=CB,连接EM,AM,
    ∵∠ACB=90∘,CM=CB,
    ∴ AC垂直平分BM,
    ∴AB=AM,
    在△MEC和△BDC中,
    CM=CB∠MCE=∠BCDCE=CD,
    ∴ △MEC≅△BDCSAS,
    ∴ ME=BD,∠CME=∠CBD,
    ∵AB2=AE2+BD2,
    ∴ AM2=AE2+ME2,
    ∴ ∠AEM=90°,
    ∵∠CME=∠CBD,
    ∴ BH∥EM,
    ∴ ∠BHE=∠AEM=90°,即∠DHE=90°,
    ∵CE=CD=12DE,
    ∴ CH=12DE,
    ∴ CD=CH.
    【点睛】
    本题考查全等三角形的判定与性质,垂直平分线的性质,平行线的判定与性质,勾股定理的逆用,直角三角形斜边中线的性质等,第二问有一定难度,正确作辅助线,证明∠DHE=90°是解题的关键.
    9.(2022·福建·中考真题)已知△ABC≌△DEC,AB=AC,AB>BC.


    (1)如图1,CB平分∠ACD,求证:四边形ABDC是菱形;
    (2)如图2,将(1)中的△CDE绕点C逆时针旋转(旋转角小于∠BAC),BC,DE的延长线相交于点F,用等式表示∠ACE与∠EFC之间的数量关系,并证明;
    (3)如图3,将(1)中的△CDE绕点C顺时针旋转(旋转角小于∠ABC),若∠BAD=∠BCD,求∠ADB的度数.
    【答案】(1)见解析
    (2)∠ACE+∠EFC=180°,见解析
    (3)30°
    【解析】
    【分析】
    (1)先证明四边形ABDC是平行四边形,再根据AB=AC得出结论;(2)先证出∠ACF=∠CEF,再根据三角形内角和∠CEF+∠ECF+∠EFC=180°,得到∠ACF+∠ECF+∠EFC=180°,等量代换即可得到结论;(3)在AD上取一点M,使得AM=CB,连接BM,证得△ABM≌△CDB,得到∠MBA=∠BDC,设∠BCD=∠BAD=α,∠BDC=β,则∠ADB=α+β,得到α+β的关系即可.
    (1)
    ∵△ABC≌△DEC,
    ∴AC=DC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,AB=DC,
    ∵CB平分∠ACD,
    ∴∠ACB=∠DCB,
    ∴∠ABC=∠DCB,
    ∴AB∥CD,
    ∴四边形ABDC是平行四边形,
    又∵AB=AC,
    ∴四边形ABDC是菱形;
    (2)
    结论:∠ACE+∠EFC=180°.
    证明:∵△ABC≌△DEC,
    ∴∠ABC=∠DEC,
    ∵AB=AC,
    ∴∠ABC=∠ACB,
    ∴∠ACB=∠DEC,
    ∵∠ACB+∠ACF=∠DEC+∠CEF=180°,
    ∴∠ACF=∠CEF,
    ∵∠CEF+∠ECF+∠EFC=180°,
    ∴∠ACF+∠ECF+∠EFC=180°,
    ∴∠ACE+∠EFC=180°;
    (3)
    在AD上取一点M,使得AM=CB,连接BM,


    ∵AB=CD,∠BAD=∠BCD,
    ∴△ABM≌△CDB,
    ∴BM=BD,∠MBA=∠BDC,
    ∴∠ADB=∠BMD,
    ∵∠BMD=∠BAD+∠MBA,
    ∴∠ADB=∠BCD+∠BDC,
    设∠BCD=∠BAD=α,∠BDC=β,则∠ADB=α+β,
    ∵CA=CD,
    ∴∠CAD=∠CDA=α+2β,
    ∴∠BAC=∠CAD-∠BAD=2β,
    ∴∠ACB=12180°-∠BAC=90°-β,
    ∴∠ACD=90°-β+α,
    ∵∠ACD+∠CAD+∠CDA=180°,   
    ∴90°-β+α+2α+2β=180°,
    ∴α+β=30°,即∠ADB=30°.
    【点睛】
    本题考查了菱形的判定定理、全等三角形的判定和性质、三角形内角和定理等,灵活运用知识,利用数形结合思想,做出辅助线是解题的关键.
    10.(2022·山东威海·中考真题)回顾:用数学的思维思考

    (1)如图1,在△ABC中,AB=AC.
    ①BD,CE是△ABC的角平分线.求证:BD=CE.
    ②点D,E分别是边AC,AB的中点,连接BD,CE.求证:BD=CE.
    (从①②两题中选择一题加以证明)
    (2)猜想:用数学的眼光观察
    经过做题反思,小明同学认为:在△ABC中,AB=AC,D为边AC上一动点(不与点A,C重合).对于点D在边AC上的任意位置,在另一边AB上总能找到一个与其对应的点E,使得BD=CE.进而提出问题:若点D,E分别运动到边AC,AB的延长线上,BD与CE还相等吗?请解决下面的问题:
    如图2,在△ABC中,AB=AC,点D,E分别在边AC,AB的延长线上,请添加一个条件(不再添加新的字母),使得BD=CE,并证明.
    (3)探究:用数学的语言表达
    如图3,在△ABC中,AB=AC=2,∠A=36°,E为边AB上任意一点(不与点A,B重合),F为边AC延长线上一点.判断BF与CE能否相等.若能,求CF的取值范围;若不能,说明理由.
    【答案】(1)见解析
    (2)添加条件CD=BE,见解析
    (3)能,0<CF<5-1
    【解析】
    【分析】
    (1)①利用ASA证明△ABD≌△ACE.
    ②利用SAS证明△ABD≌△ACE.
    (2)添加条件CD=BE,证明AC+CD=AB+BE,从而利用SAS证明△ABD≌△ACE.
    (3)在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,当BD=BF=BA时,可证△CBF∽△BAF,运用相似性质,求得CF的长即可.
    (1)
    ①如图1,∵AB=AC,
    ∴∠ABC=∠ACB,

    ∵BD,CE是△ABC的角平分线,
    ∴∠ABD=12∠ABC,∠ACE =12∠ACB,
    ∴∠ABD=∠ACE,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    ②如图1,∵AB=AC,点D,E分别是边AC,AB的中点,
    ∴AE=AD,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    (2)
    添加条件CD=BE,证明如下:
    ∵AB=AC,CD=BE,

    ∴AC+CD=AB+BE,
    ∴AD=AE,
    ∵AB=AC,∠A=∠A,
    ∴△ABD≌△ACE,
    ∴BD=CE.
    (3)

    在AC上取一点D,使得BD=CE,根据BF=CE,得到BD=BF,

    当BD=BF=BA时,E与A重合,
    ∵∠A=36°,AB=AC,
    ∴∠ABC=∠ACB=72°,∠A=∠BFA=36°,
    ∴∠ABF=∠BCF=108°,∠BFC=∠AFB,
    ∴△CBF∽△BAF,
    ∴BFAF=CFBF,
    ∵AB=AC=2=BF, 设CF=x,
    ∴2x+2=x2,
    整理,得x2+2x-4=0,
    解得x=5-1,x=-5-1(舍去),
    故CF= x=5-1,
    ∴0<CF<5-1.
    【点睛】
    本题考查了等腰三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,一元二次方程的解法,熟练掌握等腰三角形的性质,三角形全等的判定,三角形相似的判定性质是解题的关键.
    11.(2022·贵州铜仁·中考真题)如图,在四边形ABCD中,对角线AC与BD相交于点O,记△COD的面积为S1,△AOB的面积为S2.
    (1)问题解决:如图①,若AB//CD,求证:S1S2=OC⋅ODOA⋅OB
    (2)探索推广:如图②,若AB与CD不平行,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由.
    (3)拓展应用:如图③,在OA上取一点E,使OE=OC,过点E作EF∥CD交OD于点F,点H为AB的中点,OH交EF于点G,且OG=2GH,若OEOA=56,求S1S2值.

    【答案】(1)见解析;(2)(1)中的结论成立,理由见解析:(3)2554
    【解析】
    【分析】
    (1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,求出DE=OD⋅sin∠DOE,BF=OB⋅sin∠BOF,然后根据三角形面积公式求解即可;
    (2)同(1)求解即可;
    (3)如图所示,过点A作AM∥EF交OB于M,取BM中点N,连接HN,先证明△OEF≌△OCD,得到OD=OF,证明△OEF∽△OAM,得到OFOM=OEOA=56,设OE=OC=5m,OF=OD=5n,则OA=6m,OM=6n,证明△OGF∽△OHN,推出ON=32OF=15n2,BN=MN=ON-OM=3n2,则OB=ON+BN=9n,由(2)结论求解即可.
    【详解】
    解:(1)如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
    ∴DE=OD⋅sin∠DOE,BF=OB⋅sin∠BOF,
    ∴S△OCD=S1=12OC⋅DE=12OC⋅OD⋅sin∠DOE,
    S△AOB=S2=12OA⋅BF=12OA⋅OB⋅sin∠BOF,
    ∵∠DOE=∠BOF,
    ∴sin∠DOE=sin∠BOF;
    ∴S1S2=12OC⋅OD⋅sin∠DOE12OA⋅OB⋅sin∠BOF=OC⋅ODOA⋅OB;


    (2)(1)中的结论成立,理由如下:
    如图所示,过点D作AE⊥AC于E,过点B作BF⊥AC于F,
    ∴DE=OD⋅sin∠DOE,BF=OB⋅sin∠BOF,
    ∴S△OCD=S1=12OC⋅DE=12OC⋅OD⋅sin∠DOE,
    S△AOB=S2=12OA⋅BF=12OA⋅OB⋅sin∠BOF,
    ∵∠DOE=∠BOF,
    ∴sin∠DOE=sin∠BOF;
    ∴S1S2=12OC⋅OD⋅sin∠DOE12OA⋅OB⋅sin∠BOF=OC⋅ODOA⋅OB;


    (3)如图所示,过点A作AM∥EF交OB于M,取BM中点N,连接HN,
    ∵EF∥CD,
    ∴∠ODC=∠OFE,∠OCD=∠OEF,
    又∵OE=OC,
    ∴△OEF≌△OCD(AAS),
    ∴OD=OF,
    ∵EF∥AM,
    ∴△OEF∽△OAM,
    ∴OFOM=OEOA=56,
    设OE=OC=5m,OF=OD=5n,则OA=6m,OM=6n,
    ∵H是AB的中点,N是BM的中点,
    ∴HN是△ABM的中位线,
    ∴HN∥AM∥EF,
    ∴△OGF∽△OHN,
    ∴OGOH=OFON,
    ∵OG=2GH,
    ∴OG=23OH,
    ∴OGOH=OFON=23,
    ∴ON=32OF=15n2,BN=MN=ON-OM=3n2,
    ∴OB=ON+BN=9n,
    由(2)可知S1S2=OC⋅ODOA⋅OB=5m⋅5n6m⋅9n=2554.


    【点睛】
    本题主要考查了解直角三角形,相似三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,正确作出辅助线是解题的关键.
    12.(2022·湖北武汉·中考真题)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.


    (1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,
    ①如图1,若∠B=45°,m=52,则n=_____________,S=_____________;
    ②如图2,若∠B=60°,m=43,则n=_____________,S=_____________;
    (2)如图3,当∠ACB=∠EDF=90°时,探究S与m、n的数量关系,并说明理由:
    (3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.
    【答案】(1)①52,25;②4;83
    (2)S=12mn
    (3)S=63
    【解析】
    【分析】
    (1)①先证四边形DECF为正方形,再证△ABC为等腰直角三角形,根据CD平分∠ACB,得出CD⊥AB,且AD=BD=m,然后利用三角函数求出BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5即可;②先证四边形DECF为正方形,利用直角三角形两锐角互余求出∠A=90°-∠B=30°,利用30°直角三角形先证求出DE=12AD=12×43=23,利用三角函数求出AE=ADcos30°=6,DF=DE=23,BF=DFtan30°=2,BD=DF÷sin60°=4即可;
    (2)过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,先证四边形DGCH为正方形,再证△DFG≌△DEH(ASA)与△DBG≌△DIH(SAS),然后证明∠IDA=180°-∠A-∠DIH=90°即可;
    (3)过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,先证明△DQF≌△DPE,△DBQ≌△DRP,再证△DBF≌△DRE,求出∠ADR=∠ADE+∠BDF=180°-∠FDE=60°即可.
    (1)
    解:①∵∠ACB=90°,DE⊥AC,DF⊥BC,CD是△ABC的角平分线,
    ∴四边形DECF为矩形,DE=DF,
    ∴四边形DECF为正方形,
    ∵∠B=45°,
    ∴∠A=90°-∠B=45°=∠B,
    ∴△ABC为等腰直角三角形,
    ∵CD平分∠ACB,
    ∴CD⊥AB,且AD=BD=m,
    ∵m=52,
    ∴BD=n=52,
    ∴BF=BDcos45°=5,DF=BDsin45°=5,AE=ADcos45°=5,ED=DF=5,
    ∴S= S△ADE+SΔBDF=12×5×5+12×5×5=25;
    故答案为52,25;
    ②∵∠ACB=90°,DE⊥AC,DF⊥BC,CD是△ABC的角平分线,
    ∴四边形DECF为矩形,DE=DF,
    ∴四边形DECF为正方形,
    ∵∠B=60°,
    ∴∠A=90°-∠B=30°,
    ∴DE=12AD=12×43=23,AE=ADcos30°=6,DF=DE=23,
    ∵∠BDF=90°-∠B=30°,
    ∴BF=DFtan30°=2,
    ∴BD=DF÷sin60°=4,
    ∴BD=n=4,
    ∴S=S△ADE+SΔBDF=12×23×6+12×2×23=83,
    故答案为:4;83;
    (2)
    解:过点D作DH⊥AC于H,DG⊥BC于G,在HC上截取HI=BG,连接DI,
    ∴∠DHC=∠DGC=∠GCH=90°,
    ∴四边形DGCH为矩形,
    ∵CD是△ABC的角平分线,DH⊥AC,DG⊥BC,
    ∴DG=DH,
    ∴四边形DGCH为正方形,
    ∴∠GDH=90°,
    ∵∠EDF=90°,
    ∴∠FDG+∠GDE=∠GDE+∠EDH=90°,
    ∴∠FDG=∠EDH,
    在△DFG和△DEH中,
    ∠FDG=∠EDHDG=DH∠DGF=∠DHE,
    ∴△DFG≌△DEH(ASA)
    ∴FG=EH,
    在△DBG和△DIH中,
    DG=DH∠DGB=∠DHIBG=IH,
    ∴△DBG≌△DIH(SAS),
    ∴∠B=∠DIH,DB=DI=n,
    ∵∠DIH+∠A=∠B+∠A=90°,
    ∴∠IDA=180°-∠A-∠DIH=90°,
    ∴S△ADI=12AD⋅DI=12mn,
    ∴S=S△ADE+SΔBDF=S△ADE+SΔHDI=SΔADI=12mn;


    (3)
    过点D作DP⊥AC于P,DQ⊥BC于Q,在PC上截取PR=QB,连接DR,过点A作AS⊥DR于S,
    ∵CD是△ABC的角平分线,DP⊥AC,DQ⊥BC,
    ∴DP=DQ,
    ∵∠ACB=60°
    ∴∠QDP=120°,
    ∵∠EDF=120°,
    ∴∠FDQ+∠FDP=∠FDP+∠EDP=120°,
    ∴∠FDQ=∠EDP,


    在△DFQ和△DEP中,
    ∠FDQ=∠EDPDQ=DP∠DQF=∠DPE,
    ∴△DFQ≌△DEP(ASA)
    ∴DF=DE,∠QDF=∠PDE,
    在△DBQ和△DRP中,
    DQ=DP∠DQB=∠DPRBQ=RP,
    ∴△DBQ≌△DRP(SAS),
    ∴∠BDQ=∠RDP,DB=DR,
    ∴∠BDF=∠BDQ+∠FDQ=∠RDP+∠EDP=∠RDE,
    ∵DB=DE,DB=DR,
    ∴△DBF≌△DRE,
    ∴∠ADR=∠ADE+∠BDF=180°-∠FDE=60°,
    ∴S=S△ADR=12AS⋅DR=12ADsin60°×DR=12×6×32×4=63.
    【点睛】
    本题考查等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形,掌握等腰直角三角形判定与性质,正方形判定与性质,三角形全等判定与性质,直角三角形判定,三角形面积,角平分线性质,解直角三角形是解题关键.
    13.(2022·黑龙江·中考真题)△ABC和△ADE都是等边三角形.

    (1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有PA+PB=PC(或PA+PC=PB)成立;请证明.
    (2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?并加以证明;
    (3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接PA,猜想线段PA、PB、PC之间有怎样的数量关系?直接写出结论,不需要证明.
    【答案】(1)证明见解析
    (2)图②结论:PB=PA+PC,证明见解析
    (3)图③结论:PA+PB=PC
    【解析】
    【分析】
    (1)由△ABC是等边三角形,得AB=AC,再因为点P与点A重合,所以PB=AB,PC=AC,PA=0,即可得出结论;
    (2)在BP上截取BF=CP,连接AF,证明△BAD≌△CAE(SAS),得∠ABD=∠ACE,再证明△CAP≌△BAF(SAS),得∠CAP=∠BAF,AF=AP,然后证明△AFP是等边三角形,得PF=AP,即可得出结论;
    (3)在CP上截取CF=BP,连接AF,证明△BAD≌△CAE(SAS),得∠ABD=∠ACE,再证明△BAP≌△CAF(SAS),得出∠CAF=∠BAP,AP=AF,然后证明△AFP是等边三角形,得PF=AP,即可得出结论:PA+PB=PF+CF=PC.
    (1)
    证明:∵△ABC是等边三角形,
    ∴AB=AC,
    ∵点P与点A重合,
    ∴PB=AB,PC=AC,PA=0,
    ∴PA+PB=PC或PA+PC=PB;
    (2)
    解:图②结论:PB=PA+PC
    证明:在BP上截取BF=CP,连接AF,

    ∵△ABC和△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°
    ∴∠BAC+∠CAD=∠DAE+∠CAD,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴∠ABD=∠ACE,
    ∵AC=AB,CP=BF,   
    ∴△CAP≌△BAF(SAS),
    ∴∠CAP=∠BAF,AF=AP,
    ∴∠CAP+∠CAF=∠BAF+∠CAF,
    ∴∠FAP=∠BAC=60°,
    ∴△AFP是等边三角形,
    ∴PF=AP,
    ∴PA+PC=PF+BF=PB;
    (3)
    解:图③结论:PA+PB=PC,
    理由:在CP上截取CF=BP,连接AF,

    ∵△ABC和△ADE都是等边三角形,
    ∴AB=AC,AD=AE,∠BAC=∠DAE=60°
    ∴∠BAC+∠BAE=∠DAE+∠BAE,
    ∴∠BAD=∠CAE,
    ∴△BAD≌△CAE(SAS),
    ∴∠ABD=∠ACE,
    ∵AB=AC,BP=CF,
    ∴△BAP≌△CAF(SAS),   
    ∴∠CAF=∠BAP,AP=AF,
    ∴∠BAF+∠BAP=∠BAF+∠CAF,
    ∴∠FAP=∠BAC=60°,
    ∴△AFP是等边三角形,
    ∴PF=AP,
    ∴PA+PB=PF+CF=PC,
    即PA+PB=PC.
    【点睛】
    本题考查等边三角形的判定与性质,全等三角形的判定与性质,熟练掌握等边三角形的判定与性质、全等三角形的判定与性质是解题的关键.
    14.(2022·陕西·中考真题)问题提出
    (1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为__________.
    问题探究
    (2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.
    问题解决
    (3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:
    ①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;
    ②作CD的垂直平分线l,与CD于点E;
    ③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.
    请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.

    【答案】(1)75°
    (2)1532
    (3)符合要求,理由见解析
    【解析】
    【分析】
    (1)利用等腰三角形的判定及性质,结合三角形内角和,先求出∠PCD=15°即可;
    (2)连接BP.先证明出四边形ACBP是菱形.利用菱形的性质得出BP=AC=6,由∠ACB=120°,得出∠PBE=60°.根据l⊥BC,得BE=PB⋅cos60°=3,PE=PB⋅sin60°=33,即可求出S△ABC=12BC⋅PE=93,再求出OE=3,利用S四边形OECA=S△ABC-S△OBE即可求解;
    (3)由作法,知AP=AC,根据CD=CA,∠CAB=45°,得出∠ACD=90°.以AC、CD为边,作正方形ACDF,连接PF.得出AF=AC=AP.根据l是CD的垂直平分线,证明出△AFP为等边三角形,即可得出结论.
    (1)
    解:∵AC=AP,
    ∴∠ACP=∠APC,
    ∵2(∠ACD+∠PCD)+∠CAP=180°,
    ∴2×(60°+∠PCD)+30°=180°,
    解得:∠PCD=15°,
    ∴∠ACP=∠ACD+∠PCD=75°,
    ∴∠APC=75°,
    故答案为:75°;
    (2)
    解:如图2,连接BP.

              图2
    ∵AP∥BC,AP=BC=AC,
    ∴四边形ACBP是菱形.
    ∴BP=AC=6.
    ∵∠ACB=120°,
    ∴∠PBE=60°.
    ∵l⊥BC,
    ∴BE=PB⋅cos60°=3,PE=PB⋅sin60°=33.
    ∴S△ABC=12BC⋅PE=93.
    ∵∠ABC=30°,
    ∴OE=BE⋅tan30°=3.
    ∴S△OBE=12BE⋅OE=332.
    ∴S四边形OECA=S△ABC-S△OBE=1532.
    (3)
    解:符合要求.
    由作法,知AP=AC.
    ∵CD=CA,∠CAB=45°,
    ∴∠ACD=90°.
    如图3,以AC、CD为边,作正方形ACDF,连接PF.

                 图3
    ∴AF=AC=AP.
    ∵l是CD的垂直平分线,
    ∴l是AF的垂直平分线.
    ∴PF=PA.
    ∴△AFP为等边三角形.
    ∴∠FAP=60°,
    ∴∠PAC=30°,
    ∴∠BAP=15°.
    ∴裁得的△ABP型部件符合要求.
    【点睛】
    本题考查了等边三角形的性质,等腰三角形的判定及性质、三角形内角和定理、菱形的判定及性质、锐角三角函数、正方形、垂直平分线,解题的关键是要灵活运用以上知识点进行求解,涉及知识点较多,题目较难.
    15.(2022·湖南岳阳·中考真题)如图,△ABC和△DBE的顶点B重合,∠ABC=∠DBE=90°,∠BAC=∠BDE=30°,BC=3,BE=2.

    (1)特例发现:如图1,当点D,E分别在AB,BC上时,可以得出结论:ADCE=______,直线AD与直线CE的位置关系是______;
    (2)探究证明:如图2,将图1中的△DBE绕点B顺时针旋转,使点D恰好落在线段AC上,连接EC,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展运用:如图3,将图1中的△DBE绕点B顺时针旋转α(19°

    相关试卷

    专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用):

    这是一份专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题34以圆为载体的几何压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共110页, 欢迎下载使用。

    专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用):

    这是一份专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用),文件包含专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用原卷版docx、专题32三角形压轴综合问题-备战2023年中考数学必刷真题考点分类专练全国通用解析版docx等2份试卷配套教学资源,其中试卷共92页, 欢迎下载使用。

    初中数学中考复习 专题33四边形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】:

    这是一份初中数学中考复习 专题33四边形压轴综合问题-备战2023年中考数学必刷真题考点分类专练(全国通用)【原卷版】,共15页。试卷主要包含了解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map