安徽省宿州市埇桥区闵贤中学2022-2023学年七年级数学第二学期期末质量检测试题含答案
展开
这是一份安徽省宿州市埇桥区闵贤中学2022-2023学年七年级数学第二学期期末质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,若代数式有意义,则x应满足,下列调查中,适合用普查的是,若将等内容,欢迎下载使用。
安徽省宿州市埇桥区闵贤中学2022-2023学年七年级数学第二学期期末质量检测试题(时间:120分钟 分数:120分) 学校_______ 年级_______ 姓名_______ 考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。 一、选择题(每小题3分,共30分)1.下列图形都是由同样大小的黑、白圆按照一定规律组成的,其中第①个图形中一共有2个白色圆,第②个图形中一共有8个白色圆,第③个图形中一共有16个白色圆,按此规律排列下去,第⑦个图形中白色圆的个数是( )A.96 B.86 C.68 D.522.如图,一次函数和反比例函数的图象交于,,两点,若,则的取值范围是( )A. B.或C. D.或3.反比例函数经过点(1,),则的值为( )A.3 B. C. D.4.若代数式有意义,则x应满足( )A.x=0 B.x≠1 C.x≥﹣5 D.x≥﹣5且x≠15.如图是可以自由转动的转盘,转盘被等分成三个扇形,并分别标上1,2,3,转盘停止后,则指针指向的数字为偶数的概率是( )A. B. C. D.6.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是( )A. B. C. D7.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=12,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G,若EF=EG,则CD的长为( )A.3.6 B.4 C.4.8 D.58.下列调查中,适合用普查的是( )A.了解我省初中学生的家庭作业时间 B.了解“嫦娥四号”卫星零部件的质量C.了解一批电池的使用寿命 D.了解某市居民对废电池的处理情况9.若将 (a、b均为正数)中的字母a、b的值分别扩大为原来的3倍,则分式的值( )A.扩大为原来的3倍 B.缩小为原来的C.不变 D.缩小为原来的10.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是( )A.2 B.3 C.4 D.5二、填空题(本大题共有6小题,每小题3分,共18分)11.已知点及第二象限的动点,且.设的面积为,则关于的函数关系式为________.12.已知,当=-1时,函数值为_____;13.已知x+y=,xy=,则x2y+xy2的值为____.14.如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为__.15.如图,线段AC、BD交于点O,请你添加一个条件:________,使△AOB∽△COD.16.如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.三、解下列各题(本大题共8小题,共72分)17.(8分)在平行四边形中,和的平分线交于的延长线交于,是猜想:(1)与的位置关系?(2)在的什么位置上?并证明你的猜想.(3)若,则点到距离是多少? 18.(8分)如图所示,以△ABC的三边AB、BC、CA在BC的同侧作等边△ABD、△BCE、△CAF,请说明:四边形ADEF为平行四边形. 19.(8分)某县响应“建设环保节约型社会”的号召,决定资助部分村镇修建一批沼气池,使农民用到经济、环保的沼气能源.幸福村共有264户村民,政府补助村里34万元,不足部分由村民集资.修建A型、B型沼气池共20个.两种型号沼气池每个修建费用、可供使用户数、修建用地情况如下表:沼气池
修建费用(万元/个)
可供使用户数(户/个)
占地面积(m2/个)
A型
3
20
48
B型
2
3
6
政府相关部门批给该村沼气池修建用地708平方米.设修建A型沼气池x个,修建两种型号沼气池共需费用y万元.(1)用含有x的代数式表示y;(2)不超过政府批给修建沼气池用地面积,又要使该村每户村民用上沼气的修建方案有几种;(3)若平均每户村民集资700元,能否满足所需费用最少的修建方案. 20.(8分)实验中学学生在学习等腰三角形性质“三线合一”时(1)(探究发现)如图1,在△ABC中,若AD平分∠BAC,AD⊥BC时,可以得出AB=AC,D为BC中点,请用所学知识证明此结论.(2)(学以致用)如果Rt△BEF和等腰Rt△ABC有一个公共的顶点B,如图2,若顶点C与顶点F也重合,且∠BFE=∠ACB,试探究线段BE和FD的数量关系,并证明.(3)(拓展应用)如图3,若顶点C与顶点F不重合,但是∠BFE=∠ACB仍然成立,(学以致用)中的结论还成立吗?证明你的结论. 21.(8分)在等腰三角形ABD 中, ABAD.(I)试利用无刻度的直尺和圆规作图,求作:点C ,使得四边形 ABCD 是菱形.(保留作图痕迹,不写作法和证明);(II)在菱形 ABCD 中,连结 AC 交 BD 于点O,若 AC8,BD6,求AB边上的高h的长. 22.(10分)某中学开展“一起阅读,共同成长”课外读书周活动,活动后期随机调查了八年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题: (1)本次调查的学生总数为______人,在扇形统计图中,课外阅读时间为5小时的扇形圆心角度数是______;(2)请你补全条形统计图;(3)若全校八年级共有学生人,估计八年级一周课外阅读时间至少为小时的学生有多少人? 23.(10分)为鼓励学生参加体育锻炼,学校计划拿出不超过3200元的资金购买一批篮球和排球,已知篮球和排球的单价比为3:2,单价和为160元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的排球数少于11个,有哪几种购买方案? 24.(12分)在一次晚会上,大家做投飞镖的游戏.只见靶子设计成如图的形式.已知从里到外的三个圆的半径分别为l,2,3,并且形成A,B,C三个区域.如果飞镖没有停落在最大圆内或只停落在圆周上,那么可以重新投镖.(1)分别求出三个区域的面积;(2)雨薇与方冉约定:飞镖停落在A、B区域雨薇得1分,飞镖落在C区域方冉得1分.你认为这个游戏公平吗? 为什么? 如果不公平,请你修改得分规则,使这个游戏公平. 参考答案 一、选择题(每小题3分,共30分)1、C2、D3、B4、D5、D6、D7、B8、B9、D10、D 二、填空题(本大题共有6小题,每小题3分,共18分)11、12、-113、3 14、1.15、OB=OD.(答案不唯一)16、①③ 三、解下列各题(本大题共8小题,共72分)17、(1);(2)在的中点处,见解析;(3)点到距离是.18、证明见解析19、(1)y;(2)3种修建方案:①A型12个,B型8个;②A型13个,B型7个;③A型14个,B型6个;(3)能20、(1)见解析;(2)结论:DF=2BE;(3)结论不变:DF=2BE.21、 (I)见解析;(II)22、(1)50,;(2)见解析;(3)432人.23、(1)篮球和排球的单价分别是96元、64元. (2)共有三种购买方案:①购买篮球26个,排球10个;②购买篮球27个,排球11个;③购买篮球28个,排球8个24、(1)5π;(2)这个游戏不公平,见解析;修改得分规则:飞镖停落在A、B区域雨薇得5分,飞镖停落在C区域方冉得4分,这样游戏就公平了.
相关试卷
这是一份安徽省宿州市埇桥区闵贤中学2023-2024学年数学九上期末复习检测试题含答案,共6页。试卷主要包含了如图,已知,,,的长为,下列方程属于一元二次方程的是等内容,欢迎下载使用。
这是一份2023-2024学年安徽省宿州市埇桥集团学校九上数学期末检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,sin 30°的值为,下列函数中属于二次函数的是,下列式子中最简二次根式是等内容,欢迎下载使用。
这是一份2023-2024学年安徽省宿州市埇桥区闵贤中学数学八年级第一学期期末经典试题含答案,共8页。试卷主要包含了答题时请按要求用笔,若分式有意义,则的取值范围为,下列各式中,正确的个数有等内容,欢迎下载使用。