北京市昌平临川育人学校2022-2023学年七下数学期末质量跟踪监视模拟试题含答案
展开这是一份北京市昌平临川育人学校2022-2023学年七下数学期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了在下列说法中,已知关于x的不等式等内容,欢迎下载使用。
北京市昌平临川育人学校2022-2023学年七下数学期末质量跟踪监视模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.下列各曲线中,表示是的函数是( )
A. B. C. D.
2.分式有意义的条件是( )
A. B. C.且 D.或
3.下列图形中既是中心对称图形,又是轴对称图形的是( )
A. B.
C. D.
4.一次函数的图象如图所示,将直线向下平移若干个单位后得直线,的函数表达式为.下列说法中错误的是( )
A. B. C. D.当时,
5.如图,在▱ABCD中,AC、BD相交于点O,点E是AB的中点.若OE=1cm,则AD的长是( )cm.
A.2 B.3 C.4 D.5
6.如图,在中,,点是的中点,则下列结论不正确的是( )
A. B. C. D.
7.在下列说法中:
①有一个外角是 120°的等腰三角形是等边三角形.
② 有两个外角相等的等腰三角形是等边三角形.
③ 有一边上的高也是这边上的中线的等腰三角形是等边三角形.
④ 三个外角都相等的三角形是等边三角形.
其中正确的有( )
A.1 个 B.2 个 C.3 个 D.4 个
8.下列关于x的方程是一元二次方程的是( )
A. B. C. D.
9.教育局组织学生篮球赛,有x支球队参加,每两队赛一场时,共需安排45场比赛,则符合题意的方程为( )
A. B. C. D.
10.已知关于x的不等式(2﹣a)x>1的解集是x<;则a的取值范围是( )
A.a>0 B.a<0 C.a<2 D.a>2
11.用配方法解一元二次方程时,此方程可变形为( )
A. B. C. D.
12.要从甲、乙、丙三名学生中选出一名学生参加数学竞赛,对这三名学生进行了10次数学测试,经过数据分析,3人的平均成绩均为92分,甲的方差为0.024、乙的方差为0.08、丙的方差为0.015,则这10次测试成绩比较稳定的是( )
A.甲 B.乙 C.丙 D.无法确定
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.在平面直角坐标系中,将点向右平移3个单位所对应的点的坐标是__________.
14. “暑期乒乓球夏令营”开始在学校报名了,已知甲、乙、丙三个夏令营组人数相等,且每组学生的平均年龄都是14岁,三个组学生年龄的方差分别是,, 如果今年暑假你也准备报名参加夏令营活动,但喜欢和年龄相近的同伴相处,那么你应选择是________.
15.如图,正方形的边长为,点,分别在边,上,若是的中点,且,则的长为_______.
16.如图,正方形ABOC的面积为4,反比例函数的图象过点A,则k=_______.
17.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为______.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)如图1,直线与双曲线交于、两点,与轴交于点,与轴交于点,已知点、点.
(1)求直线和双曲线的解析式;
(2)将沿直线翻折,点落在第一象限内的点处,直接写出点的坐标;
(3)如图2,过点作直线交轴的负半轴于点,连接交轴于点,且的面积与的面积相等.
①求直线的解析式;
②在直线上是否存在点,使得?若存在,请直接写出所有符合条件的点的坐标;如果不存在,请说明理由.
19.(5分)如图,已知AD∥BC,AB⊥BC,AB=BC=4,P为线段AB上一动点.将△BPC沿PC翻折至△EPC,延长CE交射线AD于点D
(1)如图1,当P为AB的中点时,求出AD的长
(2)如图2,延长PE交AD于点F,连接CF,求证:∠PCF=45°
(3)如图3,∠MON=45°,在∠MON内部有一点Q,且OQ=8,过点Q作OQ的垂线GH分别交OM、ON于G、H两点.设QG=x,QH=y,直接写出y关于x的函数解析式
20.(8分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。
(1)直接写出与之间的函数关系式;
(2)分别求出第10天和第15天的销售金额。
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
21.(10分)在如图平面直角坐标系中,直线l分别交x轴、y轴于点A(3,0)、B(0,4)两点,动点P从点O开始沿OA向点A以每秒个单位长度运动,动点Q从点B开始沿BO向点O以每秒个单位长度运动,过点P作y轴的平行线交直线AB于点M,连接PQ.且点P、Q分别从点O、B同时出发,运动时间为t秒.
(1)请直接写出直线AB的函数解析式: ;
(2)当t=4时,四边形BQPM是否为菱形?若是,请说明理由;若不是,请求出当t为何值时,四边形BQPM是菱形.
22.(10分)如图,已知:在直角坐标系中,A(﹣2,4)B(﹣4,2);A1、B1是A、B关于y轴的对称点;
(1)请在图中画出A、B关于原点O的对称点A2,B2(保留痕迹,不写作法);并直接写出A1、A2、B1、B2的坐标.
(2)试问:在x轴上是否存在一点C,使△A1B1C的周长最小,若存在求C点的坐标,若不存在说明理由.
23.(12分) (1)化简:.
(2)若(1)中的值是不等式“”的一个负整数解,请你在其中选一个你喜欢的数代入(1)中求值.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、B
2、B
3、D
4、B
5、A
6、D
7、B
8、D
9、A
10、D
11、D
12、C
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、
14、乙组
15、4
16、-4
17、3;
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1);(2);(3)点的坐标为或.
19、(1)1;(2)见解析;(3)
20、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
21、(1);(2)当t=4时,四边形BQPM是菱形.
22、(1)点A1、A2、B1、B2的坐标分别为(2,4),(4,2),(2,﹣4),(4,﹣2);(2)存在.
23、 (1)x+1;(2)-2.
相关试卷
这是一份北京市北京昌平临川育人学校2023-2024学年九上数学期末监测模拟试题含答案,共9页。试卷主要包含了下列事件,如图所示的工件,其俯视图是, 见解析,B2,C2等内容,欢迎下载使用。
这是一份2023-2024学年北京市昌平临川育人学校九上数学期末统考模拟试题含答案,共8页。试卷主要包含了一元二次方程的解是等内容,欢迎下载使用。
这是一份北京市昌平临川育人学校2023-2024学年数学八上期末调研模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知等内容,欢迎下载使用。