2022-2023学年山东省郓城县七年级数学第二学期期末学业质量监测模拟试题含答案
展开
这是一份2022-2023学年山东省郓城县七年级数学第二学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,点A等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,矩形被对角线、分成四个小三角形,这四个小三角形的周长之和是,.则矩形的周长是( )
A.B.C.D.
2.《九章算术》记载“今有邑方不知大小,各中开门.出北门三十步有木,出西门七百五十步见木.问邑方有几何?”意思是:如图,点M、点N分别是正方形ABCD的边AD、AB的中点,ME⊥AD,NF⊥AB,EF过点A,且ME=30步,NF=750步,则正方形的边长为( )
A.150步B.200步C.250步D.300步
3. “龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表示了寓言中的龟、兔的路程S和时间t的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是( )
A.赛跑中,兔子共休息了50分钟
B.乌龟在这次比赛中的平均速度是0.1米/分钟
C.兔子比乌龟早到达终点10分钟
D.乌龟追上兔子用了20分钟
4.下列图形中,是轴对称图形,又是中心对称图形的是( )
A.B.
C.D.
5.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是( )
A.①②都对B.①②都错
C.①对②错D.①错②对
6.小刚家院子里的四棵小树E,F,G,H刚好在其梯形院子ABCD各边的中点上,若在四边形EFGH上种满小草,则这块草地的形状是 ( )
A.平行四边形 B.矩形 C.正方形 D.梯形
7.点A(m﹣1,n+1)在平面直角坐标系中的位置如图所示,则坐标为(m+1,n﹣1)的点是( )
A.P点B.B点C.C点D.D点
8.关于一次函数y=﹣2x+3,下列结论正确的是( )
A.图象过点(1,﹣1)B.图象经过一、二、三象限
C.y随x的增大而增大D.当x>时,y<0
9.下列各曲线表示的y与x的关系中,y不是x的函数的是( )
A.B.
C.D.
10.已知关于x的不等式组无解,则a的取值范围是( )
A.a<3B.a≤3C.a>3D.a≥3
二、填空题(本大题共有6小题,每小题3分,共18分)
11.如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1= 和y2= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:① ②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.
12.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2, AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.
13.将直线y=2x+1向下平移3个单位长度后所得直线的表达式是 ______.
14.关于x的一元二次方程x2﹣2x+k﹣1=0没有实数根,则k的取值范围是_____.
15.一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同.搅均后从中任意摸出1个球,摸出白球可能性______摸出黄球可能性.(填“等于”或“小于”或“大于”).
16.化简:=_________.
三、解下列各题(本大题共8小题,共72分)
17.(8分)已知,正方形ABCD中,,绕点A顺时针旋转,它的两边长分别交CB、DC或它们的延长线于点MN,于点H.
如图,当点A旋转到时,请你直接写出AH与AB的数量关系;
如图,当绕点A旋转到时,中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明.
18.(8分)如图,点C在线段AB上,过点C作CD⊥AB,点E,F分别是AD,CD的中点,连结EF并延长EF至点G,使得FG=CB,连结CE,GB,过点B作BH∥CE交线段EG于点H.
(1)求证:四边形FCBG是矩形.
(1)己知AB=10,.
①当四边形ECBH是菱形时,求EG的长.
②连结CH,DH,记△DEH的面积为S1, △CBH的面积为S1.若EG=1FH,求S1+S1的值.
19.(8分)近几年,随着电子产品的广泛应用,学生的近视发生率出现低龄化趋势,引起了相关部门的重视.某区为了了解在校学生的近视低龄化情况,对本区7-18岁在校近视学生进行了简单的随机抽样调查,并绘制了以下两幅不完整的统计图.
请根据图中信息,回答下列问题:
(1)这次抽样调查中共调查了近视学生 人;
(2)请补全条形统计图;
(3)扇形统计图中10-12岁部分的圆心角的度数是 ;
(4)据统计,该区7-18岁在校学生近视人数约为10万,请估计其中7-12岁的近视学生人数.
20.(8分)某智能手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
已知A,B两款手机的进货和销售价格如下表:
(1)今年A款手机每部售价多少元?
(2)该店计划新进一批A款手机和B款手机共90部,且B款手机的进货数量不超过A款手机数量的两倍,应如何进货才能使这批手机获利最多?
21.(8分)先化简,再求值:(1﹣)÷,其中x=+1.
22.(10分)在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q(3×1+4,1+3×4),即Q(7,13).
(1)已知点A(-2,6)的“级关联点”是点A1,点B的“2级关联点”是B1(3,3),求点A1和点B的坐标;
(2)已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,求M′的坐标;
(3)已知点C(-1,3),D(4,3),点N(x,y)和它的“n级关联点”N′都位于线段CD上,请直接写出n的取值范围.
23.(10分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
24.(12分)如图,梯形ABCD中,AD∥BC,点M是BC的中点,且MA=MD.
求证:四边形ABCD是等腰梯形.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、D
4、C
5、A
6、A
7、C
8、D
9、C
10、B
二、填空题(本大题共有6小题,每小题3分,共18分)
11、①②④.
12、或﹣.
13、y=1x-1
14、k>1
15、小于
16、
三、解下列各题(本大题共8小题,共72分)
17、;(2)数量关系还成立.证明见解析.
18、(1)证明见解析 (1)① ②2或
19、(1)1500;(2)详见解析;(3)108°;(5)1.
20、(1)今年A款手机每部售价1600元;(2)当新进A款手机30部,B款手机60部时,这批手机获利最大.
21、.
22、(1)(1,1)(2)(0,﹣16)(3)
23、(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定
24、证明见解析
A款手机
B款手机
进货价格(元)
1100
1400
销售价格(元)
今年的销售价格
2000
队员
平均/环
中位数/环
众数/环
甲
7
b
7
乙
a
7.5
c
相关试卷
这是一份山东省重点中学2022-2023学年七年级数学第二学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了已知,则等内容,欢迎下载使用。
这是一份山东省潍坊市寒亭区2022-2023学年数学七年级第二学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,已知直线l经过点A等内容,欢迎下载使用。
这是一份山东省寿光市现代中学2022-2023学年数学七年级第二学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了下列命题中,错误的是等内容,欢迎下载使用。