终身会员
搜索
    上传资料 赚现金

    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题

    立即下载
    加入资料篮
    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题第1页
    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题第2页
    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题第3页
    还剩9页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题

    展开

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题,共12页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。


    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题

    一、填空题
    1.(2023年新高考天津数学高考真题)已知是虚数单位,化简的结果为 .
    2.(2023年新高考天津数学高考真题)在的展开式中,项的系数为 .
    3.(2023年新高考天津数学高考真题)过原点的一条直线与圆相切,交曲线于点,若,则的值为 .
    4.(2023年新高考天津数学高考真题)若函数有且仅有两个零点,则的取值范围为 .
    5.(2022年高考天津卷(回忆版)数学真题)已知是虚数单位,化简的结果为 .
    6.(北京市第四十四中学2019-2020学年高二下学期诊断性测试数学试题)的展开式中的常数项为 .
    7.(2022年高考天津卷(回忆版)数学真题)若直线与圆相交所得的弦长为,则 .
    8.(2022年高考天津卷(回忆版)数学真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .
    9.(2021年天津高考数学试题)是虚数单位,复数 .
    10.(2021年天津高考数学试题)在的展开式中,的系数是 .
    11.(2021年天津高考数学试题)若斜率为的直线与轴交于点,与圆相切于点,则 .
    12.(2021年天津高考数学试题)若,则的最小值为 .

    二、双空题
    13.(2023年新高考天津数学高考真题)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 .
    14.(2023年新高考天津数学高考真题)在中,,,点为的中点,点为的中点,若设,则可用表示为 ;若,则的最大值为 .
    15.(2022年高考天津卷(回忆版)数学真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为 ;已知第一次抽到的是A,则第二次抽取A的概率为
    16.(2022年高考天津卷(回忆版)数学真题)在中,,D是AC中点,,试用表示为 ,若,则的最大值为
    17.(2021年天津高考数学试题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为 ,3次活动中,甲至少获胜2次的概率为 .
    18.(2021年天津高考数学试题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为 ;的最小值为 .

    参考答案:
    1./
    【分析】由题意利用复数的运算法则,分子分母同时乘以,然后计算其运算结果即可.
    【详解】由题意可得.
    故答案为:.
    2.
    【分析】由二项式展开式的通项公式写出其通项公式,令确定的值,然后计算项的系数即可.
    【详解】展开式的通项公式,
    令可得,,
    则项的系数为.
    故答案为:60.
    3.
    【分析】根据圆和曲线关于轴对称,不妨设切线方程为,,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.
    【详解】易知圆和曲线关于轴对称,不妨设切线方程为,,
    所以,解得:,由解得:或,
    所以,解得:.
    当时,同理可得.
    故答案为:.
    4.
    【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.
    【详解】(1)当时,,
    即,
    若时,,此时成立;
    若时,或,
    若方程有一根为,则,即且;
    若方程有一根为,则,解得:且;
    若时,,此时成立.
    (2)当时,,
    即,
    若时,,显然不成立;
    若时,或,
    若方程有一根为,则,即;
    若方程有一根为,则,解得:;
    若时,,显然不成立;
    综上,
    当时,零点为,;
    当时,零点为,;
    当时,只有一个零点;
    当时,零点为,;
    当时,只有一个零点;
    当时,零点为,;
    当时,零点为.
    所以,当函数有两个零点时,且.
    故答案为:.
    【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.
    5./
    【分析】根据复数代数形式的运算法则即可解出.
    【详解】.
    故答案为:.
    6.
    【分析】由题意结合二项式定理可得的展开式的通项为,令,代入即可得解.
    【详解】由题意的展开式的通项为,
    令即,则,
    所以的展开式中的常数项为.
    故答案为:.
    【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.
    7.
    【分析】计算出圆心到直线的距离,利用勾股定理可得出关于的等式,即可解得的值.
    【详解】圆的圆心坐标为,半径为,
    圆心到直线的距离为,
    由勾股定理可得,因为,解得.
    故答案为:.
    8.
    【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.
    【详解】设,,由可得.
    要使得函数至少有个零点,则函数至少有一个零点,则,
    解得或.
    ①当时,,作出函数、的图象如下图所示:

    此时函数只有两个零点,不合乎题意;
    ②当时,设函数的两个零点分别为、,
    要使得函数至少有个零点,则,
    所以,,解得;
    ③当时,,作出函数、的图象如下图所示:

    由图可知,函数的零点个数为,合乎题意;
    ④当时,设函数的两个零点分别为、,
    要使得函数至少有个零点,则,
    可得,解得,此时.
    综上所述,实数的取值范围是.
    故答案为:.
    【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:
    (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
    (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
    (3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.
    9.
    【分析】利用复数的除法化简可得结果.
    【详解】.
    故答案为:.
    10.160
    【分析】求出二项式的展开式通项,令的指数为6即可求出.
    【详解】的展开式的通项为,
    令,解得,
    所以的系数是.
    故答案为:160.
    11.
    【分析】设直线的方程为,则点,利用直线与圆相切求出的值,求出,利用勾股定理可求得.
    【详解】设直线的方程为,则点,
    由于直线与圆相切,且圆心为,半径为,
    则,解得或,所以,
    因为,故.
    故答案为:.
    12.
    【分析】两次利用基本不等式即可求出.
    【详解】,

    当且仅当且,即时等号成立,
    所以的最小值为.
    故答案为:.
    13. /
    【分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空;
    根据古典概型的概率公式可求出第二个空.
    【详解】设甲、乙、丙三个盒子中的球的个数分别为,所以总数为,
    所以甲盒中黑球个数为,白球个数为;
    甲盒中黑球个数为,白球个数为;
    甲盒中黑球个数为,白球个数为;
    记“从三个盒子中各取一个球,取到的球都是黑球”为事件,所以,

    记“将三个盒子混合后取出一个球,是白球”为事件,
    黑球总共有个,白球共有个,
    所以,.
    故答案为:;.
    14.
    【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
    【详解】空1:因为为的中点,则,可得,
    两式相加,可得到,
    即,则;
    空2:因为,则,可得,
    得到,
    即,即.
    于是.
    记,
    则,
    在中,根据余弦定理:,
    于是,
    由和基本不等式,,
    故,当且仅当取得等号,
    则时,有最大值.
    故答案为:;.
      
    15.
    【分析】由题意结合概率的乘法公式可得两次都抽到A的概率,再由条件概率的公式即可求得在第一次抽到A的条件下,第二次抽到A的概率.
    【详解】由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,
    则.
    故答案为:;.
    16.
    【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
    法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
    【详解】方法一:

    ,,
    ,当且仅当时取等号,而,所以.
    故答案为:;.
    方法二:如图所示,建立坐标系:

    ,,
    ,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
    故答案为:;.
    17.
    【分析】根据甲猜对乙没有猜对可求出一次活动中,甲获胜的概率;在3次活动中,甲至少获胜2次分为甲获胜2次和3次都获胜求解.
    【详解】由题可得一次活动中,甲获胜的概率为;
    则在3次活动中,甲至少获胜2次的概率为.
    故答案为:;.
    18. 1
    【分析】设,由可求出;将化为关于的关系式即可求出最值.
    【详解】设,,为边长为1的等边三角形,,

    ,为边长为的等边三角形,,




    所以当时,的最小值为.
    故答案为:1;.


    相关试卷

    高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题:

    这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题,共10页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。

    高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题:

    这是一份高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题,共10页。试卷主要包含了填空题等内容,欢迎下载使用。

    高考数学全国甲卷(文)3年(2021-2023)真题分类汇编-填空题:

    这是一份高考数学全国甲卷(文)3年(2021-2023)真题分类汇编-填空题,共9页。试卷主要包含了填空题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map