所属成套资源:各地区高考数学3年(2021-2023)真题分类汇编
高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题
展开这是一份高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题,共12页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。
高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题
一、填空题
1.(2023年新高考天津数学高考真题)已知是虚数单位,化简的结果为 .
2.(2023年新高考天津数学高考真题)在的展开式中,项的系数为 .
3.(2023年新高考天津数学高考真题)过原点的一条直线与圆相切,交曲线于点,若,则的值为 .
4.(2023年新高考天津数学高考真题)若函数有且仅有两个零点,则的取值范围为 .
5.(2022年高考天津卷(回忆版)数学真题)已知是虚数单位,化简的结果为 .
6.(北京市第四十四中学2019-2020学年高二下学期诊断性测试数学试题)的展开式中的常数项为 .
7.(2022年高考天津卷(回忆版)数学真题)若直线与圆相交所得的弦长为,则 .
8.(2022年高考天津卷(回忆版)数学真题)设,对任意实数x,记.若至少有3个零点,则实数的取值范围为 .
9.(2021年天津高考数学试题)是虚数单位,复数 .
10.(2021年天津高考数学试题)在的展开式中,的系数是 .
11.(2021年天津高考数学试题)若斜率为的直线与轴交于点,与圆相切于点,则 .
12.(2021年天津高考数学试题)若,则的最小值为 .
二、双空题
13.(2023年新高考天津数学高考真题)甲乙丙三个盒子中装有一定数量的黑球和白球,其总数之比为.这三个盒子中黑球占总数的比例分别为.现从三个盒子中各取一个球,取到的三个球都是黑球的概率为 ;将三个盒子混合后任取一个球,是白球的概率为 .
14.(2023年新高考天津数学高考真题)在中,,,点为的中点,点为的中点,若设,则可用表示为 ;若,则的最大值为 .
15.(2022年高考天津卷(回忆版)数学真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为 ;已知第一次抽到的是A,则第二次抽取A的概率为
16.(2022年高考天津卷(回忆版)数学真题)在中,,D是AC中点,,试用表示为 ,若,则的最大值为
17.(2021年天津高考数学试题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为 ,3次活动中,甲至少获胜2次的概率为 .
18.(2021年天津高考数学试题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为 ;的最小值为 .
参考答案:
1./
【分析】由题意利用复数的运算法则,分子分母同时乘以,然后计算其运算结果即可.
【详解】由题意可得.
故答案为:.
2.
【分析】由二项式展开式的通项公式写出其通项公式,令确定的值,然后计算项的系数即可.
【详解】展开式的通项公式,
令可得,,
则项的系数为.
故答案为:60.
3.
【分析】根据圆和曲线关于轴对称,不妨设切线方程为,,即可根据直线与圆的位置关系,直线与抛物线的位置关系解出.
【详解】易知圆和曲线关于轴对称,不妨设切线方程为,,
所以,解得:,由解得:或,
所以,解得:.
当时,同理可得.
故答案为:.
4.
【分析】根据绝对值的意义,去掉绝对值,求出零点,再根据根存在的条件即可判断的取值范围.
【详解】(1)当时,,
即,
若时,,此时成立;
若时,或,
若方程有一根为,则,即且;
若方程有一根为,则,解得:且;
若时,,此时成立.
(2)当时,,
即,
若时,,显然不成立;
若时,或,
若方程有一根为,则,即;
若方程有一根为,则,解得:;
若时,,显然不成立;
综上,
当时,零点为,;
当时,零点为,;
当时,只有一个零点;
当时,零点为,;
当时,只有一个零点;
当时,零点为,;
当时,零点为.
所以,当函数有两个零点时,且.
故答案为:.
【点睛】本题的解题关键是根据定义去掉绝对值,求出方程的根,再根据根存在的条件求出对应的范围,然后根据范围讨论根(或零点)的个数,从而解出.
5./
【分析】根据复数代数形式的运算法则即可解出.
【详解】.
故答案为:.
6.
【分析】由题意结合二项式定理可得的展开式的通项为,令,代入即可得解.
【详解】由题意的展开式的通项为,
令即,则,
所以的展开式中的常数项为.
故答案为:.
【点睛】本题考查了二项式定理的应用,考查了运算求解能力,属于基础题.
7.
【分析】计算出圆心到直线的距离,利用勾股定理可得出关于的等式,即可解得的值.
【详解】圆的圆心坐标为,半径为,
圆心到直线的距离为,
由勾股定理可得,因为,解得.
故答案为:.
8.
【分析】设,,分析可知函数至少有一个零点,可得出,求出的取值范围,然后对实数的取值范围进行分类讨论,根据题意可得出关于实数的不等式,综合可求得实数的取值范围.
【详解】设,,由可得.
要使得函数至少有个零点,则函数至少有一个零点,则,
解得或.
①当时,,作出函数、的图象如下图所示:
此时函数只有两个零点,不合乎题意;
②当时,设函数的两个零点分别为、,
要使得函数至少有个零点,则,
所以,,解得;
③当时,,作出函数、的图象如下图所示:
由图可知,函数的零点个数为,合乎题意;
④当时,设函数的两个零点分别为、,
要使得函数至少有个零点,则,
可得,解得,此时.
综上所述,实数的取值范围是.
故答案为:.
【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:
(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;
(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;
(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.
9.
【分析】利用复数的除法化简可得结果.
【详解】.
故答案为:.
10.160
【分析】求出二项式的展开式通项,令的指数为6即可求出.
【详解】的展开式的通项为,
令,解得,
所以的系数是.
故答案为:160.
11.
【分析】设直线的方程为,则点,利用直线与圆相切求出的值,求出,利用勾股定理可求得.
【详解】设直线的方程为,则点,
由于直线与圆相切,且圆心为,半径为,
则,解得或,所以,
因为,故.
故答案为:.
12.
【分析】两次利用基本不等式即可求出.
【详解】,
,
当且仅当且,即时等号成立,
所以的最小值为.
故答案为:.
13. /
【分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空;
根据古典概型的概率公式可求出第二个空.
【详解】设甲、乙、丙三个盒子中的球的个数分别为,所以总数为,
所以甲盒中黑球个数为,白球个数为;
甲盒中黑球个数为,白球个数为;
甲盒中黑球个数为,白球个数为;
记“从三个盒子中各取一个球,取到的球都是黑球”为事件,所以,
;
记“将三个盒子混合后取出一个球,是白球”为事件,
黑球总共有个,白球共有个,
所以,.
故答案为:;.
14.
【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
【详解】空1:因为为的中点,则,可得,
两式相加,可得到,
即,则;
空2:因为,则,可得,
得到,
即,即.
于是.
记,
则,
在中,根据余弦定理:,
于是,
由和基本不等式,,
故,当且仅当取得等号,
则时,有最大值.
故答案为:;.
15.
【分析】由题意结合概率的乘法公式可得两次都抽到A的概率,再由条件概率的公式即可求得在第一次抽到A的条件下,第二次抽到A的概率.
【详解】由题意,设第一次抽到A的事件为B,第二次抽到A的事件为C,
则.
故答案为:;.
16.
【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
【详解】方法一:
,,
,当且仅当时取等号,而,所以.
故答案为:;.
方法二:如图所示,建立坐标系:
,,
,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
故答案为:;.
17.
【分析】根据甲猜对乙没有猜对可求出一次活动中,甲获胜的概率;在3次活动中,甲至少获胜2次分为甲获胜2次和3次都获胜求解.
【详解】由题可得一次活动中,甲获胜的概率为;
则在3次活动中,甲至少获胜2次的概率为.
故答案为:;.
18. 1
【分析】设,由可求出;将化为关于的关系式即可求出最值.
【详解】设,,为边长为1的等边三角形,,
,
,为边长为的等边三角形,,
,
,
,
所以当时,的最小值为.
故答案为:1;.
相关试卷
这是一份高考数学全国乙卷(文)3年(2021-2023)真题分类汇编-填空题、双空题,共10页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。
这是一份高考数学全国乙卷(理)3年(2021-2023)真题分类汇编-填空题,共10页。试卷主要包含了填空题等内容,欢迎下载使用。
这是一份高考数学全国甲卷(文)3年(2021-2023)真题分类汇编-填空题,共9页。试卷主要包含了填空题等内容,欢迎下载使用。