搜索
    上传资料 赚现金
    英语朗读宝

    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何

    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何第1页
    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何第2页
    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何第3页
    还剩12页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何

    展开

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何,共15页。试卷主要包含了单选题,双空题,解答题等内容,欢迎下载使用。
    高考数学天津卷3年(2021-2023)真题分类汇编-平面向量、空间向量与立体几何

    一、单选题
    1.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为,则这两个圆锥的体积之和为(    )
    A. B. C. D.
    2.(2022·天津·统考高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为,腰为3的等腰三角形,则该几何体的体积为(    )

    A.23 B.24 C.26 D.27
    3.(2023·天津·统考高考真题)在三棱锥中,线段上的点满足,线段上的点满足,则三棱锥和三棱锥的体积之比为(    )
    A. B. C. D.

    二、双空题
    4.(2023·天津·统考高考真题)在中,,,点为的中点,点为的中点,若设,则可用表示为 ;若,则的最大值为 .
    5.(2022·天津·统考高考真题)在中,,D是AC中点,,试用表示为 ,若,则的最大值为
    6.(2021·天津·统考高考真题)在边长为1的等边三角形ABC中,D为线段BC上的动点,且交AB于点E.且交AC于点F,则的值为 ;的最小值为 .

    三、解答题
    7.(2021·天津·统考高考真题)如图,在棱长为2的正方体中,E为棱BC的中点,F为棱CD的中点.

    (I)求证:平面;
    (II)求直线与平面所成角的正弦值.
    (III)求二面角的正弦值.
    8.(2022·天津·统考高考真题)直三棱柱中,,D为的中点,E为的中点,F为的中点.

    (1)求证:平面;
    (2)求直线与平面所成角的正弦值;
    (3)求平面与平面夹角的余弦值.
    9.(2023·天津·统考高考真题)三棱台中,若面,分别是中点.
      
    (1)求证://平面;
    (2)求平面与平面所成夹角的余弦值;
    (3)求点到平面的距离.

    参考答案:
    1.B
    【分析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.
    【详解】如下图所示,设两个圆锥的底面圆圆心为点,
    设圆锥和圆锥的高之比为,即,

    设球的半径为,则,可得,所以,,
    所以,,,
    ,则,所以,,
    又因为,所以,,
    所以,,,
    因此,这两个圆锥的体积之和为.
    故选:B.
    2.D
    【分析】作出几何体直观图,由题意结合几何体体积公式即可得组合体的体积.
    【详解】该几何体由直三棱柱及直三棱柱组成,作于M,如图,
    因为,所以,
    因为重叠后的底面为正方形,所以,
    在直棱柱中,平面BHC,则,
    由可得平面,
    设重叠后的EG与交点为


    则该几何体的体积为.
    故选:D.
    3.B
    【分析】分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.先证平面,则可得到,再证.由三角形相似得到,,再由即可求出体积比.
    【详解】如图,分别过作,垂足分别为.过作平面,垂足为,连接,过作,垂足为.
      
    因为平面,平面,所以平面平面.
    又因为平面平面,,平面,所以平面,且.
    在中,因为,所以,所以,
    在中,因为,所以,
    所以.
    故选:B

    4.
    【分析】空1:根据向量的线性运算,结合为的中点进行求解;空2:用表示出,结合上一空答案,于是可由表示,然后根据数量积的运算和基本不等式求解.
    【详解】空1:因为为的中点,则,可得,
    两式相加,可得到,
    即,则;
    空2:因为,则,可得,
    得到,
    即,即.
    于是.
    记,
    则,
    在中,根据余弦定理:,
    于是,
    由和基本不等式,,
    故,当且仅当取得等号,
    则时,有最大值.
    故答案为:;.
      
    5.
    【分析】法一:根据向量的减法以及向量的数乘即可表示出,以为基底,表示出,由可得,再根据向量夹角公式以及基本不等式即可求出.
    法二:以点为原点建立平面直角坐标系,设,由可得点的轨迹为以为圆心,以为半径的圆,方程为,即可根据几何性质可知,当且仅当与相切时,最大,即求出.
    【详解】方法一:

    ,,
    ,当且仅当时取等号,而,所以.
    故答案为:;.
    方法二:如图所示,建立坐标系:

    ,,
    ,所以点的轨迹是以为圆心,以为半径的圆,当且仅当与相切时,最大,此时.
    故答案为:;.
    6. 1
    【分析】设,由可求出;将化为关于的关系式即可求出最值.
    【详解】设,,为边长为1的等边三角形,,

    ,为边长为的等边三角形,,




    所以当时,的最小值为.
    故答案为:1;.

    7.(I)证明见解析;(II);(III).
    【分析】(I)建立空间直角坐标系,求出及平面的一个法向量,证明,即可得证;
    (II)求出,由运算即可得解;
    (III)求得平面的一个法向量,由结合同角三角函数的平方关系即可得解.
    【详解】(I)以为原点,分别为轴,建立如图空间直角坐标系,
    则,,,,,,,
    因为E为棱BC的中点,F为棱CD的中点,所以,,
    所以,,,
    设平面的一个法向量为,
    则,令,则,
    因为,所以,
    因为平面,所以平面;
    (II)由(1)得,,
    设直线与平面所成角为,
    则;
    (III)由正方体的特征可得,平面的一个法向量为,
    则,
    所以二面角的正弦值为.

    8.(1)证明见解析
    (2)
    (3)

    【分析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,利用空间向量法可证得结论成立;
    (2)利用空间向量法可求得直线与平面夹角的正弦值;
    (3)利用空间向量法可求得平面与平面夹角的余弦值.
    【详解】(1)证明:在直三棱柱中,平面,且,则
    以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,

    则、、、、、、、、,则,
    易知平面的一个法向量为,则,故,
    平面,故平面.
    (2)解:,,,
    设平面的法向量为,则,
    取,可得,.
    因此,直线与平面夹角的正弦值为.
    (3)解:,,
    设平面的法向量为,则,
    取,可得,则,
    因此,平面与平面夹角的余弦值为.
    9.(1)证明见解析
    (2)
    (3)

    【分析】(1)先证明四边形是平行四边形,然后用线面平行的判定解决;
    (2)利用二面角的定义,作出二面角的平面角后进行求解;
    (3)方法一是利用线面垂直的关系,找到垂线段的长,方法二无需找垂线段长,直接利用等体积法求解
    【详解】(1)  
    连接.由分别是的中点,根据中位线性质,//,且,
    由棱台性质,//,于是//,由可知,四边形是平行四边形,则//,
    又平面,平面,于是//平面.
    (2)过作,垂足为,过作,垂足为,连接.
    由面,面,故,又,,平面,则平面.
    由平面,故,又,,平面,于是平面,
    由平面,故.于是平面与平面所成角即.
    又,,则,故,在中,,则,
    于是
      
    (3)[方法一:几何法]
      
    过作,垂足为,作,垂足为,连接,过作,垂足为.
    由题干数据可得,,,根据勾股定理,,
    由平面,平面,则,又,,平面,于是平面.
    又平面,则,又,,平面,故平面.
    在中,,
    又,故点到平面的距离是到平面的距离的两倍,
    即点到平面的距离是.
    [方法二:等体积法]
      
    辅助线同方法一.
    设点到平面的距离为.

    .
    由,即.

    相关试卷

    高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题:

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-填空题、双空题,共12页。试卷主要包含了填空题,双空题等内容,欢迎下载使用。

    高考数学天津卷3年(2021-2023)真题分类汇编-平面解析几何:

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-平面解析几何,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    高考数学天津卷3年(2021-2023)真题分类汇编-计数原理与概率统计、复数:

    这是一份高考数学天津卷3年(2021-2023)真题分类汇编-计数原理与概率统计、复数,共8页。试卷主要包含了单选题,填空题,双空题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map