所属成套资源:小学数学典型应用题精讲宝典
小学数学典型应用题精讲宝典-4.植树 年龄问题 全国通用版
展开
这是一份小学数学典型应用题精讲宝典-4.植树 年龄问题 全国通用版,共3页。
植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。【数量关系】 线形植树 棵数=距离÷棵距+1 环形植树 棵数=距离÷棵距 方形植树 棵数=距离÷棵距-4 三角形植树 棵数=距离÷棵距-3 面积植树 棵数=面积÷(棵距×行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 136÷2+1=68+1=69(棵)答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解 400÷4=100(棵) 答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 220×4÷8-4=110-4=106(个)答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解 96÷(0.6×0.4)=96÷0.24=400(块)答:至少需要400块地板砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 (1)桥的一边有多少个电杆? 500÷50+1=11(个) (2)桥的两边有多少个电杆? 11×2=22(个) (3)大桥两边可安装多少盏路灯?22×2=44(盏)答:大桥两边一共可以安装44盏路灯。年龄问题【含义】 这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。 两个数的差÷(几倍-1)=较小的数例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 35÷5=7(倍) (35+1)÷(5+1)=6(倍)答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 (1)母亲比女儿的年龄大多少岁? 37-7=30(岁) (2)几年后母亲的年龄是女儿的4倍?30÷(4-1)-7=3(年)列成综合算式 (37-7)÷(4-1)-7=3(年)答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解 今年父子的年龄和应该比3年前增加(3×2)岁,今年二人的年龄和为 49+3×2=55(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(4+1)倍,因此,今年儿子年龄为 55÷(4+1)=11(岁)今年父亲年龄为 11×4=44(岁)答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将61岁”。求甲乙现在的岁数各是多少?(可用方程解)解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析: 过去某一年今 年将来某一年甲□岁△岁61岁乙4岁□岁△岁表中两个“□”表示同一个数,两个“△”表示同一个数。因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (61-4)÷3=19(岁)甲今年的岁数为 △=61-19=42(岁)乙今年的岁数为 □=42-19=23(岁)答:甲今年的岁数是42岁,乙今年的岁数是23岁。
相关试卷
这是一份小学数学典型应用题精讲宝典-18.列方程问题 全国通用版,共3页。
这是一份小学数学典型应用题精讲宝典-14.溶液浓度问题 全国通用版,共2页。
这是一份小学数学典型应用题精讲宝典-13.利润,利率问题 全国通用版,共3页。