|试卷下载
搜索
    上传资料 赚现金
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      第02讲 与三角形有关的角(人教版)(原卷版).docx
    • 第02讲 与三角形有关的角(人教版)(解析版).docx
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷01
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷02
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷03
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷01
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷02
    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角

    展开
    这是一份2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角,文件包含第02讲与三角形有关的角人教版解析版docx、第02讲与三角形有关的角人教版原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。


    ·模块一 三角形的内角
    ·模块二 直角三角形的性质与判定
    ·模块三 三角形的外角
    ·模块四 课后作业
    模块一
    三角形的内角
    1.三角形内角和定理
    三角形的内角和等于180°。
    【考点1 三角形内角和定理】
    【例1.1】在我们的生活中处处有数学的身影,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理_____.
    【答案】三角形的内角和是180°
    【详解】根据折叠的性质,折叠前后的两个角相等,即∠A=∠1,∠B=∠2,∠C=∠3,根据把三角形的三个角转化为一个平角∠1+∠2+∠3=180°,可得∠A+∠B+∠C=180°,因此这个定理为:三角形的内角和是180°.
    故答案为三角形的内角和是180°.
    点睛:本题主要考查了三角形的内角和定理的证明,熟练掌握翻折变换的性质是解题的关键.
    【例1.2】如果三角形的三个内角度数分别为x°,y°,y°,则x,y满足的关系式( )
    A.x+y=90B.2x=yC.x+2y=90D.x+2y=180
    【答案】D
    【分析】利用三角形的内角和定理,即可得出结论.
    【详解】解:∵x°+y°+y°=180°,
    ∴x+2y=180;
    故选D.
    【点睛】本题考查三角形的内角和定理.熟练掌握三角形的内角和为180°,是解题的关键.
    【例1.3】如图,已知点P是射线ON上一动点(不与点O重合),∠O=30°,若△AOP为钝角三角形,则∠A的取值范围是( )
    A.0°<∠A<60°B.90°<∠A<180°
    C.10°<∠A<30°或90°<∠A<130°D.0°<∠A<60°或90°<∠A<150°
    【答案】D
    【分析】当两角的和小于90°或一个角大于90°时三角形是一个钝角三角形,由此可求解.
    【详解】解:由三角形内角和可得:∠OAP+∠O+∠APO=180°,
    ∵∠O=30°,
    ∴当∠OAP与∠O的和小于90°时,三角形为钝角三角形,则有0°<∠A<60°;
    当∠OAP大于90°时,此时三角形为钝角三角形,则有90°<∠A<150°.
    故选:D.
    【点睛】本题主要考查三角形内角和及一元一次不等式的应用,熟练掌握三角形内角和及一元一次不等式的应用是解题的关键.
    【变式1.1】一个缺角的三角形ABC残片如图所示,量得∠A=55°,∠B=60°,则这个三角形残缺前的∠C的度数为( )
    A.75°B.65°C.55°D.45°
    【答案】B
    【分析】由三角形的内角和定理即可求解.
    【详解】解:∵∠A+∠B+∠C=180°,∠A=55°,∠B=60°,
    ∴∠C=180°−∠B−∠A=180°−55∘−60∘=65∘,
    故选:B
    【点睛】本题考查了三角形内角和定理,熟练掌握三角形的内角和定理是解题的关键.
    【变式1.2】如图,直线a,b所成的角跑到画板外面了,某同学发现只要量出一条直线分别与直线a,b相交所形成的角的度数就可求得该角,已知∠1=71°,∠2=78°,则直线a,b所形成的锐角的度数为__________°.

    【答案】31
    【分析】直线a,b交于点A,与边框的交点分别为B,C,由对顶角的性质可求解∠ABC和∠ACB的度数,再根据三角形的内角和定理可求解.
    【详解】解:直线a,b相交于点A,与边框的交点分别为B,C,如图,

    ∵∠1=71°,∠2=78°,
    ∴∠ABC=∠1=71°,∠ACB=∠2=78°,
    ∵∠A+∠ABC+∠ACB=180°,
    ∴∠A=180°−71°−78°=31°,
    故答案为31.
    【点睛】本题主要考查对顶角,三角形的内角和定理,利用对顶角的性质求解∠ABC,∠ACB的度数是解题的关键.
    【考点2 三角形内角和定理的应用】
    【例2.1】如图,在△ABC中,∠B=70°,∠ACD=50°,AB∥CD,则∠ACB的度数为( )
    A.90°B.85°C.60°D.55°
    【答案】C
    【分析】先根据平行线的性质求出∠A=∠ACD=50°,再根据三角形内角和定理求解即可.
    【详解】解:∵AB∥CD,∠ACD=50°,
    ∴∠A=∠ACD=50°,
    又∵∠B=70°,
    ∴∠ACB=180°−∠A−∠B=60°,
    故选C.
    【点睛】本题主要考查了平行线的性质,三角形内角和定理,熟知三角形内角和为180°是解题的关键.
    【例2.2】如图,将△ABC沿着平行于BC的直线折叠,得到△A′DE,若∠DA′E=25°,∠DEA′=115°,则∠ABC的度数是( )
    A.45°B.40°C.55°D.50°
    【答案】B
    【分析】根据题意可得∠A′DE=∠ADE,DE∥BC,结合三角形内角和定理可得∠ADE=40°,最后根据平行线的性质求解即可.
    【详解】解:由题意得,∠A′DE=∠ADE,DE∥BC,
    又∵∠DA′E=25°,∠DEA′=115°,
    ∴∠ADE=∠A′DE=180°−∠DA′E−∠DEA′=180°−25°−115°=40°,
    ∵DE∥BC,
    ∴∠ADE=∠B=40°,
    故选:B.
    【点睛】本题考查了三角形内角和定理、平行线的性质和折叠的性质,灵活运用所学知识求解是解决本题的关键.
    【例2.3】如图,在△ABC中,∠A=100°,△ABC的角平分线BD,CE交于点O,则∠BOC=______.
    【答案】140°/140度
    【分析】根据角平分线的定义可知∠OBC=12∠ABC,∠OCB=12∠ACB,然后结合三角形内角和定理即可获得答案.
    【详解】解:∵BD,CE为△ABC的角平分线,∠A=100°,
    ∴∠OBC=12∠ABC,∠OCB=12∠ACB,
    ∴∠BOC=180°−(∠OBC+∠OCB)
    =180°−(12∠ABC+12∠ACB)
    =180°−12(∠ABC+∠ACB)
    =180°−12(180°−∠A)
    =180°−12×(180°−100°)
    =140°.
    故答案为:140°.
    【点睛】本题主要考查了三角形角平分线的定义以及三角形内角和定理等知识,熟练掌握相关知识是解题关键.
    【变式2.1】将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )度.
    A.60B.75C.45D.30
    【答案】B
    【分析】利用三角形内角和定理以及对顶角相等即可求解.
    【详解】解:由题意得∠A=60°,∠B=45°,
    ∴∠1=∠ACB=180°−∠A−∠B=75°,
    故选:B.
    【点睛】本题考查了三角形内角和定理,对顶角的性质,掌握相关性质是解题的关键.
    【变式2.2】将一副三角板如图放放置,使点A在DE上,BC//DE.则∠ACD的度数为( )
    A.45°B.50°C.60°D.75°
    【答案】D
    【分析】根据∠ACD=90°-∠ACE,想办法求出∠ACE即可解决问题.
    【详解】解:∵DE∥BC,
    ∴∠E=∠ECB=30°,
    ∵∠ACB=45°,
    ∴∠ACE=∠ACB-∠ECB=15°,
    ∵∠ECD=90°,
    ∴∠ACD=90°-15°=75°,
    故选:D.
    【点睛】本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    【变式2.3】如图△ABC中,AD,AE分别是△ABC的高和角平分线,∠B=36°,∠DAE=16°.求∠CAD的度数.
    【答案】22°
    【分析】先求解∠BAD=90°−∠B=54°,∠BAE=∠BAD−∠DAE=54°−16°=38°,结合角平分线可得∠CAE=∠BAE=38°,从而可得答案.
    【详解】解:∵AD为△ABC的高
    ∴在Rt△ABC中,∠ADB=90°,∠B=36°,
    ∴∠BAD=90°−∠B=54°(直角三角形两个锐角互余),
    ∴∠BAE=∠BAD−∠DAE=54°−16°=38°,
    又∵AE为∠BAC的角平分线,
    ∴∠CAE=∠BAE=38°,
    ∴∠CAD=∠CAE−∠DAE=38°−16°=22°.
    【点睛】本题考查的是三角形的高与角平分线的定义,三角形的内角和定理的应用,掌握概念与三角形的内角和定理是解本题的关键.
    模块二
    直角三角形的性质与判定
    1.直角三角形的性质
    直角三角形的两个锐角互余。
    2.直角三角形的判定
    有两个角互余的三角形是直角三角形。
    【考点1 直角三角形的性质】
    【例1.1】已知直角三角形的一个锐角的度数为50°,则其另一个锐角的度数为___度.
    【答案】40
    【分析】根据直角三角形两个锐角互余求解即可.
    【详解】解:∵直角三角形的一个锐角的度数为50°,
    ∴另一个锐角的度数是90°−50°=40°,
    故答案为:40.
    【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形的性质是解答本题的关键.
    【例1.2】(2023年山西省运城市中考二模数学试题)如图,在△ABC中,直线m∥BC,AB⊥m于点D,直线m与AC交于点E,若∠C=20°,则∠A的度数为( )

    A.40°B.50°C.60°D.70°
    【答案】D
    【分析】根据垂直的定义可得∠ADE=90°,然后根据“两直线平行,同位角相等”可得∠AED=20°,再根据直角三角形两锐角互余即可得出答案.
    【详解】解:∵AB⊥m,
    ∴∠ADE=90°,
    ∵m∥BC,∠C=20°,
    ∴∠AED=20°,
    ∴∠A=90°−20°=70°,
    故选:D.
    【点睛】本题考查了垂直的定义,平行线的性质,直角三角形两锐角互余等知识点,熟练掌握相关知识点是解本题的关键,题型比较简单,属于基础题.
    【例1.3】如图所示,将一副三角尺叠放在一起,则∠α的大小为( )
    A.75°B.65°C.60°D.55°
    【答案】A
    【分析】如图所示,根据直角三角板的特点,可知∠B=∠D=90°,∠CAB=60°,∠EAD=45°,在Rt△BAF中,根据两锐角互余即可求解.
    【详解】解:一副三角尺,如图所示,
    ∴∠B=∠D=90°,∠CAB=60°,∠EAD=45°,
    ∴∠BAF=∠CAB−∠EAD=60°−45°=15°,
    在Rt△ABF中,∠α=90°−∠BAF=90°−15°=75°,
    故选:A.
    【点睛】本题主要考查直角三角形的性质,掌握直角三角形中两个锐角的互余的关系是解题的关键.
    【变式1.1】已知直角三角形两个锐角的度数之比为3:2,求这两个锐角的度数.
    【答案】这两个锐角的度数为54∘和36∘
    【分析】根据直角三角形的两锐角互余列方程求解即可.
    【详解】解:设两个角分别为3x,2x,
    根据题意,得3x+2x=90∘,
    解得:x=18∘,
    ∴3x=54∘,2x=36∘,
    则这两个锐角的度数为54∘和36∘.
    【点睛】本题考查了直角三角形的两锐角互余、解一元一次方程,会通过直角三角形的两锐角互余列方程求解角的度数是解答的关键.
    【变式1.2】如图△ABC中,∠ACB=90°,点D在AB上,将△ABC沿CD折叠,点B落在AC边上的点B′处,若∠ADB′=30°,则∠A=___________°.
    【答案】30
    【分析】由折叠的性质及已知,可分别求得∠BDC及∠BCD的度数,由三角形内角和定理可求得∠B,进而求得∠A的度数.
    【详解】由折叠的性质得:∠BDC=∠B′DC,∠BCD=∠B′CD.
    ∵∠ADB′=30°,
    ∴∠BDC=12(180°−∠ADB′)=75°.
    ∵∠ACB=90°,
    ∴∠BCD=12∠ACB=45°.
    ∴∠B=180°−(∠BDC+∠BCD)=180°−(75°+45°)=60°.
    ∴∠A=90°−∠B=90°−60°=30°.
    故答案为:30.
    【点睛】本题考查了折叠的性质,三角形内角和定理,直角三角形两内角互余等知识,折叠性质的应用是解题的关键.
    【变式1.3】如图,已知∠AON=40°,点P是射线ON上一动点,当△AOP为直角三角形时,∠A=________.
    【答案】90°或50°
    【分析】先分类讨论,根据直角三角形的两锐角互余即可求解.
    【详解】解:依题意, △AOP为直角三角形时,
    当∠A= 90°,△AOP为直角三角形时,
    当∠APO=90°时,∠A=90°−∠AON=90°−40°=50°,
    故答案为:90°或50°.
    【点睛】本题考查了直角三角形的两锐角互余,分类讨论是解题的关键.
    【考点2 直角三角形的判定】
    【例2.1】在△ABC中,满足下列条件:①∠A=60°,∠C=30°;②∠A+∠B=∠C;③∠A:∠B:∠C=3:4:5;④∠A=90°−∠C,能确定△ABC是直角三角形的有( )
    A.1个B.2个C.3个D.4个
    【答案】C
    【分析】根据三角形内角和以及题中各条件,求角度,若存在角度为90°时,则该条件符合题意,进而可得答案.
    【详解】①∵∠A=60°,∠C=30°;
    ∴∠A+∠C=60°+30°=90°,
    ∵∠A+∠B+∠C=180°,
    ∴∠B=180°−∠A−∠C=180°−90°=90°,
    则能确定△ABC是直角三角形,故本选项符合题意;
    ②∵∠A+∠B=∠C,
    ∴∠A+∠B+∠C=2∠C=180°,
    ∴∠C=90°,
    则能确定△ABC是直角三角形,故本选项符合题意;
    ③∵∠A:∠B:∠C=3:4:5,
    ∴最大角∠C=180°×53+4+5=75°,
    则不能确定△ABC是直角三角形,故本选项不符合题意;
    ③∵∠A=90°−∠C,
    ∴∠A+∠B=90°,
    ∴∠C=180°−90°=90°,
    则能确定△ABC是直角三角形,故本选项符合题意;
    故选C.
    【点睛】本题考查了三角形内角和定理.解题的关键在于找出角度的数量关系.
    【例2.2】已知:如图,在△ABC中,D是AB上一点,∠1=∠B,∠A=∠2.求证:△ABC是直角三角形.
    【答案】见解析
    【分析】利用三角形内角和定理可得∠1+∠2=90°,据此即可证明△ABC是直角三角形.
    【详解】解:在△ABC中,D是AB上一点,∠1=∠B,∠A=∠2,
    ∵∠A+∠2+∠1+∠B=180°,
    ∴2∠1+2∠2=180°,即∠1+∠2=90°,
    ∴∠ACB=90°,
    ∴△ABC是直角三角形.
    【点睛】本题考查了三角形内角和定理,掌握“三角形三个内角和等于180°”是解题的关键.
    【变式2.1】根据下列条件不能判断△ABC是直角三角形的是( )
    A.∠B=50° ,∠C=40°B.∠B=∠C=45
    C.∠A,∠B,∠C的度数比为5:3:2D.∠A-∠B=90°
    【答案】D
    【详解】A.是直角三角形,因为∠B+∠C=90°,根据有两个角互余的三角形是直角三角形,可知△ABC是直角三角形;
    B.是直角三角形.因为∠B+∠C=90°,根据有两个角互余的三角形是直角三角形,可知△ABC是直角三角形;
    C.是直角三角形.因为∠A:∠B:∠C=5:3:2,∠A+∠B+∠C=180°,所以∠A=90°,故△ABC是直角三角形;
    D. 由∠A-∠B=90°无法判断哪个角是直角,
    故选D.
    【变式2.2】如图,在Rt△ABC 中,∠B=90°,直线 DE 与 AC,BC 分别交于 D,E 两点.若∠DEC=∠A,则△EDC 是______________.
    【答案】直角三角形
    【分析】根据直角三角形的两个锐角互余可知∠A+∠C=90°,再由∠DEC=∠A进而可得出结论.
    【详解】解: 在Rt△ABC 中,
    ∵∠B=90°,
    ∴∠A+∠C=90°,
    ∵∠DEC=∠A,
    ∴∠DEC+∠C=90°,
    ∴∠EDC=90°,
    ∴△EDC 是直角三角形,
    故答案为 直角三角形.
    【点睛】本题考查了直角三角形的两个锐角互余及有两个角互余的三角形是直角三角形,是基础知识要熟练掌握.
    模块三
    三角形的外角
    1.三角形的外角
    定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角。
    内外角的关系:三角形的外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角。
    【考点1 三角形的外角】
    【例1.1】图中,∠1是△ABC的外角的是( )
    A. B.
    C. D.
    【答案】D
    【例1.2】如图所示,下列说法错误的是( )
    A. ∠ADC是△ABD的一个外角,也是△ADC的一个内角
    B. ∠AEB是△AEB的一个内角,也是△AEF的一个内角
    C. ∠ABF是△ABF的一个内角,也是△AEF的一个外角
    D. ∠C是△ABC的一个内角,也是△ADC的一个内角
    【答案】C
    【详解】解:由图可得
    ∠ADC是△ABD的一个外角,也是△ADC的一个内角,故A正确,不符合题意;
    ∠AEB是△AEB的一个内角,也是△AEF的一个内角,故B正确,不符合题意;
    ∠ABF是△ABF的一个内角,不是△AEF的一个外角,故C错误,符合题意;
    ∠C是△ABC的一个内角,也是△ADC的一个内角,故D正确,不符合题意.
    故选C.
    【变式1.1】如图,以∠AOD为外角的三角形是 .
    【答案】△AOB和△COD
    【变式1.2】如图,下列说法中错误的是( )
    A. ∠1不是△ABC的外角 B. ∠ACD是△ABC的外角
    C. ∠ACD>∠A+∠B D. ∠B<∠1+∠2
    【答案】C
    【详解】解:A、∠1不是△ABC的外角,正确;
    B、∠ACD是△ABC的外角,正确;
    C、∠ACD=∠A+∠B,错误;
    D、∠B<∠1+∠2,正确;
    故选:C.
    根据三角形的外角性质解答即可.
    此题考查三角形的外角性质,关键是根据三角形的一个外角等于和它不相邻的两个内角的和解答.
    【考点2 三角形的外角的性质】
    【例2.1】如图,∠A的度数为_______°

    【答案】80
    【分析】根据三角形外角的性质可进行求解.
    【详解】解:由图可知:∠A=∠ACD−∠B=110°−30°=80°;
    故答案为:80.
    【点睛】本题主要考查三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
    【例2.2】如图,AD、BC相交于点O,连接AB、CD.下列结论正确的是( )
    A.∠BOD=∠BB.∠AOC<∠D
    C.∠BOD=∠C+∠DD.∠AOC=∠A+∠C
    【答案】C
    【分析】根据三角形外角的性质进行求解即可.
    【详解】解:由三角形外角的性质可知,∠BOD=∠B+∠A=∠C+∠D,∠AOC=∠D+∠C=∠A+∠B,
    ∴∠AOC>∠D,
    ∴四个选项中只有C选项结论正确,
    故选C.
    【点睛】本题主要考查了三角形外角的性质,熟知三角形一个外角的度数等于与其不相邻的两个内角的度数之和是解题的关键.
    【例2.3】如图所示,一副三角板叠放在一起,则图中∠α的度数为( )
    A.45°B.50°C.75°D.80°
    【答案】C
    【分析】由题意得∠E=90°,∠EAC=60°,∠DAC=45°,根据角的和差关系,得∠EAD=∠EAC−∠DAC=15°,再根据三角形的外角的性质,得∠ADC=∠E+∠EAD=105°,从而解决此题.
    【详解】解:如图:

    由题意得,∠E=90°,∠EAC=60°,∠DAC=45°,
    ∴∠EAD=∠EAC−∠DAC=15°,
    ∴∠ADC=∠E+∠EAD=105°,
    ∴α=180°−∠ADC=75°,故C正确.
    故选:C.
    【点睛】本题主要考查三角形的外角,熟练掌握三角形的外角的性质,三角形一个外角等于和它不相邻的两个内角的和,是解决本题的关键.
    【变式2.1】直角三角形最小的一个外角为______度.
    【答案】90
    【分析】根据三角形的一个外角等于和它不相邻的两个内角的和,两个锐角处的外角等于直角和另一个锐角的和,而直角处的外角是两个锐角的和等于90°,所以最小的一个外角为90°.
    【详解】解:如图,根据三角形的外角性质,锐角处的外角为钝角,直角处的外角为直角,
    钝角大于直角,所以最小的一个外角为90°.
    故答案为:90.
    【点睛】本题主要考查了三角形外角的性质,熟知三角形的一个外角的度数等于和它不相邻的两个内角的度数和是解题的关键.
    【变式2.2】如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=( )
    A.360°B.180°C.250°D.245°
    【答案】C
    【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.
    【详解】解:∵∠1、∠2是△CDE的外角,
    ∴∠1=∠4+∠C,∠2=∠3+∠C,
    即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.
    故选C.
    【点睛】本题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.掌握外角的性质是解题的关键.
    【变式2.3】如图,直线a∥b,∠1=39°,∠2=70°,则∠A度数是( )

    A.39°B.21°C.31°D.70°
    【答案】C
    【分析】根据平行线的性质得出∠3=∠2=70°,根据三角形的外角的性质即可求解.
    【详解】解:如图所示,

    ∵a∥b,∠2=70°,
    ∴∠3=∠2=70°,
    又∵∠3=∠1+∠A,∠1=39°,
    ∠A=∠3−∠1=70°−39°=31°,
    故选:C.
    【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质以及三角形的外角的性质是解题的关键.
    【变式2.4】如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=( )
    A.20°B.30°C.35°D.40°
    【答案】B
    【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P的度数.
    【详解】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,
    ∴∠ABP=∠CBP=20°,∠ACP=∠MCP=50°,
    ∵∠PCM是△BCP的外角,
    ∴∠P=∠PCM−∠CBP=50°−20°=30°,
    故选:B.
    【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.
    模块四
    课后作业
    1.已知Rt△ABC中,∠B=90°,若∠C比∠A大20°,则∠A等于( )
    A.35°B.55°C.60°D.40°
    【答案】A
    【分析】根据直角三角形的两个锐角互余可得∠A+∠C=90°,结合条件即可求解.
    【详解】解:∵Rt△ABC中,∠B=90°,
    ∴∠A+∠C=90°,
    ∵∠C比∠A大20°,
    ∴∠A+∠A+20°=90°,
    解得:∠A=35°,
    故选:A.
    【点睛】本题考查了直角三角形的两个锐角互余,熟练掌握直角三角形的性质是解题的关键.
    2.如图,在△ABC中,∠C=60°,∠B=50°,D是BC上一点,DE⊥AB于点E,DF⊥AC于点F,则∠EDF的度数为( )
    A.90°B.100°C.110°D.120°
    【答案】C
    【分析】分别在Rt△BDE和Rt△DFC中,求得∠EDB和∠FDC,再利用平角的性质即可求解.
    【详解】解:∵DE⊥AB,∠B=50°,
    ∴∠EDB=90°−∠B=40°,
    ∵DF⊥AC,∠C=60°,
    ∴∠FDC=90°−∠C=30°,
    ∵∠EDB+∠FDC+∠EDF=180°,
    ∴∠EDF=180°−∠EDB−∠FDC=110°,
    故选:C.
    【点睛】本题考查了直角三角形的性质.注意利用隐含在题中的已知条件:三角形内角和是180°.
    3.在△ABC中,已知∠B=3∠A,∠C=2∠B,则这个三角形是( )
    A.锐角三角形B.直角三角形
    C.钝角三角形D.等腰直角三角形
    【答案】C
    【分析】求出△ABC三个内角的度数进行判断即可.
    【详解】解:设∠A=x,则∠B=3∠A=3x,∠C=2∠B=6x,根据题意得:
    x+3x+6x=180°,
    解得:x=18°,
    则∠A=18°,∠B=54°,∠C=108°,
    ∴这个三角形是钝角三角形,故C正确.
    故选:C.
    【点睛】本题主要考查了三角形内角和定理,三角形分类,解题的关键是求出∠A=18°,∠B=54°,∠C=108°.
    4.如图,在△DEF中,点C在DF的延长线上,点B在EF上,且AB∥CD,∠EBA=80°,∠D=45°,则∠E的度数为( )
    A.35°B.25°C.20°D.15°
    【答案】A
    【分析】根据平行线的性质可以求得∠EFC的度数,然后即可得到∠EFD的度数,再根据三角形内角和,即可求得∠E的度数.
    【详解】解:∵ AB∥CD,∠EBA=80°,
    ∴∠EBA=∠EFC=80°,
    ∴∠EFD=180°−∠EFC=180°−80°=100°,
    ∵∠EFD+∠D+∠E=180°,
    ∴∠E=180°−∠EFD−∠D=180°−100°−45°=35°,
    故选:A.
    【点睛】本题考查平行线的性质、三角形内角和,解答本题的关键是明确题意,利用数形结合的思想解答.
    5.如图,直线a∥b,直线c分别交a,b于点A,C,点B在直线b上,AB⊥AC,若∠1=130°,则∠2的度数是( )
    A.30°B.40°C.50°D.70°
    【答案】B
    【分析】直接利用三角形的外角性质及平行线的性质进行计算,即可得出答案.
    【详解】解:∵AB⊥AC,
    ∴∠BAC=90°,
    ∵ ∠1=130°,
    ∴∠ABC=∠1−∠BAC=130°−90°=40°,
    ∵直线a∥ b,
    ∴∠2=∠ABC=40°.
    故选:B.
    【点睛】本题考查了平行线的性质,垂直的定义,三角形的外角,解题的关键是掌握三角形的外角等于与它不相邻的两个内角的和.
    6.一副三角板如图所示摆放,∠BAC=∠DAE=90°,∠ACB=60°,∠AED=45°,BC∥DE,则∠BAD的度数为( )

    A.15°B.20°C.25°D.30°
    【答案】A
    【分析】利用平行线的性质求得∠1=45°,再利用三角形的外角性质即可求解.
    【详解】解:∵BC∥DE,∠B=30°,∠D=45°,
    ∴∠1=∠D=45°,
    ∴∠BAD=∠1−∠B=45°−30°=15°,

    故选:A.
    【点睛】本题考查了平行线的性质,三角形的外角性质,掌握“两直线平行,同位角相等”是解题的关键.
    7.将一个直角三角板和一把直尺按如图所示摆放,若∠1=25°,则∠2的度数为( )
    A.65°B.60°C.55°D.45°
    【答案】A
    【分析】根据平行线的性质可得出∠3=∠1=25°,进而可求出∠4=90°−∠3=65°,最后根据对顶角相等即可求解.
    【详解】解:如图,
    ∵a∥b,
    ∴∠3=∠1=25°,
    ∴∠4=90°−∠3=65°,
    ∴∠2=∠4=65°.
    故选A.
    【点睛】本题考查三角板中的角度计算,平行线的性质,对顶角相等.利用数形结合的思想是解题关键.
    8.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=65°,则∠2的度数为_______.
    【答案】25°/25度
    【分析】根据三角形外角性质得出∠3=∠1+∠B=65°,再由平行线性质得出∠3+∠2+90°=180°,即可解题.
    【详解】解:如解图,
    由三角形的内外角关系得:∠3=∠1+∠B=65°,
    ∵a∥b,∠DCB=90°,
    ∴∠2=180°−∠3−90°=180°−65°−90°=25°.
    故答案为:25°.
    【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.
    9.若一个三角形三个内角度数的比为3:7:4,那么这个三角形最大的一个角是_______度.
    【答案】90
    【分析】已知三角形三个内角的度数之比,可以设一份为k,根据三角形的内角和等于180°列方程求出k的值,从而确定三角形的最大角的度数.
    【详解】解:设三个内角的度数分别为3k,7k,4k.
    则3k+7k+4k=180,
    解得k=907,
    7k=90,
    这个三角形最大的角等于90°.
    故答案为:90.
    【点睛】本题主要考查了三角形内角和定理.解答此类题利用三角形内角和定理列方程求解可简化计算.
    10.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处.如果∠A′EC=70°,那么∠A′DB的度数为____.
    【答案】50°/50度
    【分析】根据折叠性质,∠A′ED=∠AED=180°−∠A′EC2=55°,根据三角形内角和定理,得到∠A′DE=∠ADE=180°−60°−55°=65°,根据平角计算即可.
    【详解】根据折叠性质,得∠A′ED=∠AED,∠A′DE=∠ADE,
    ∵∠A′EC=70°,
    ∴∠A′ED=∠AED=180°−∠A′EC2=55°,
    ∵∠A=60°,
    ∴∠A′DE=∠ADE=180°−60°−55°=65°,
    ∴∠A′DB=180°−∠A′DE−∠ADE=180°−65°−65°=50°,
    故答案为:50°.
    【点睛】本题考查了折叠的性质,三角形内角和定理,平角,熟练掌握折叠的性质,三角形内角和定理是解题的关键.
    11.如图,∠ABD、∠ACD的角平分线交于点P,若∠A=54°,∠D=12°,则∠P的度数为____.
    【答案】21°
    【分析】延长AC交BD于点E,设∠ABP=α,利用外角的性质表示出∠ACD,结合角平分线得到∠ACP,根据∠AFP=∠P+∠ACP列出等式,即可求出∠P.
    【详解】解:延长AC交BD于点E,
    设∠ABP=α,
    ∵BP平分∠ABD,
    ∴∠ABE=2α,
    ∴∠AED=∠ABE+∠A=2α+54°,
    ∴∠ACD=∠AED+∠D=2α+66°,
    ∵CP平分∠ACD,
    ∴∠ACP=12∠ACD=α+33°,
    ∵∠AFP=∠ABP+∠A=α+54°,
    ∠AFP=∠P+∠ACP
    ∴α+54°=∠P+α+33°,
    ∴∠P=21°,
    故答案为:21°.
    【点睛】本题考查三角形,角平分线,解题的关键是熟练运用三角形的外角性质,本题属于基础题型.
    12.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30∘,∠C=2∠B,求∠B的度数.
    【答案】50°
    【分析】根据三角形内角和定理列方程计算可得答案.
    【详解】解:∵∠A=30∘,∠C=2∠B,∠A+∠C+∠B=180°,
    ∴30°+2∠B+∠B=180°,
    解得∠B=50°.
    【点睛】此题考查了三角形的内角和定理的应用,正确掌握三角形的内角和是180°是解题的关键.
    13.如图,在△ABC中,BD平分∠ABC,CD平分∠ACB,∠A=70°,求∠D的度数.
    【答案】125°
    【分析】先根据三角形内角和定理求出∠ABC+∠ACB=110°,再由角平分线的定义推出∠DBC+∠DCB=55°,进而利用三角形内角和定理求出∠D的度数.
    【详解】解:∵∠A=70°,
    ∴∠ABC+∠ACB=180°−∠A=110°,
    ∵BD平分∠ABC,CD平分∠ACB,
    ∴∠DBC=12∠ABC,∠DCB=12∠ACB,
    ∴∠DBC+∠DCB=12∠ABC+12∠ACB=55°,
    ∴∠D=180°−∠DBC−∠DCB=125°.
    【点睛】本题主要考查了三角形内角和定理,角平分线的定义,熟知三角形内角和为180°是解题的关键.
    14.已知:如图,∠ABD=∠DBF,过AC上一点D,作DF∥AB交BC于点F.求证:∠DFC=2∠BDF.
    【答案】证明见解析
    【分析】先证明∠ABD=∠BDF,再证明∠BDF=∠DBF,结合∠DFC=∠DBF+∠BDF,从而可得结论.
    【详解】证明:∵DF∥AB,
    ∴∠ABD=∠BDF,
    ∵∠ABD=∠DBF,
    ∴∠BDF=∠DBF,
    ∵∠DFC=∠DBF+∠BDF,
    ∴∠DFC=2∠BDF.
    【点睛】本题考查的是平行线的性质,三角形的外角的性质,熟记三角形的外角的性质并灵活运用是解本题的关键.
    15.学习了证明的必要性,张明尝试证明三角形内角和定理,下面是他的部分证明过程.
    已知:如图,△ABC,求证:∠A+∠B+∠C=180∘.
    证明:过点A作直线DE∥BC…
    【答案】见解析
    【分析】过点A作直线DE∥BC,根据平行线的性质可证得∠DAB=∠B,∠EAC=∠C,再根据平角的性质,即可证得.
    【详解】证明:如图:过点A作直线DE∥BC,
    ∴∠DAB=∠B,∠EAC=∠C,
    ∵∠DAB+∠BAC+∠EAC=180∘,
    ∴∠B+∠BAC+∠C=180∘.
    【点睛】本题考查了三角形内角和定理的证明方法,熟练掌握和运用三角形内角和定理的证明方法是解决本题的关键.
    相关试卷

    2023年新八年级数学人教版暑假弯道超车自学预习——第06讲 SAS,ASA证全等: 这是一份2023年新八年级数学人教版暑假弯道超车自学预习——第06讲 SAS,ASA证全等,文件包含第06讲SASASA证全等人教版解析版docx、第06讲SASASA证全等人教版原卷版docx等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    2023年新八年级数学人教版暑假弯道超车自学预习——第04讲 角度计算中的常见模型: 这是一份2023年新八年级数学人教版暑假弯道超车自学预习——第04讲 角度计算中的常见模型,文件包含第04讲角度计算中的常见模型人教版解析版docx、第04讲角度计算中的常见模型人教版原卷版docx等2份试卷配套教学资源,其中试卷共58页, 欢迎下载使用。

    2023年新七年级数学人教版暑假弯道超车自学预习——第09讲 整式的规律探索: 这是一份2023年新七年级数学人教版暑假弯道超车自学预习——第09讲 整式的规律探索,文件包含第09讲整式的规律探索人教版解析版docx、第09讲整式的规律探索人教版原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023年新八年级数学人教版暑假弯道超车自学预习——第02讲 与三角形有关的角 试卷
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map