终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

    立即下载
    加入资料篮
    重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第1页
    重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第2页
    重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类第3页
    还剩10页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类

    展开

    这是一份重庆市b卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共13页。试卷主要包含了﹣n=x﹣y﹣z+m﹣n,…,等内容,欢迎下载使用。
    重庆市B卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
    一.规律型:图形的变化类(共2小题)
    1.(2023•重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为(  )

    A.14 B.20 C.23 D.26
    2.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为(  )

    A.15 B.13 C.11 D.9
    二.整式的加减(共2小题)
    3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:
    ①存在“绝对操作”,使其运算结果与原多项式相等;
    ②不存在“绝对操作”,使其运算结果与原多项式之和为0;
    ③所有的“绝对操作”共有7种不同运算结果.
    其中正确的个数是(  )
    A.0 B.1 C.2 D.3
    4.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,
    给出下列说法:
    ①至少存在一种“加算操作”,使其结果与原多项式相等;
    ②不存在任何“加算操作”,使其结果与原多项式之和为0;
    ③所有的“加算操作”共有8种不同的结果.
    以上说法中正确的个数为(  )
    A.0 B.1 C.2 D.3
    三.分式方程的解(共2小题)
    5.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是(  )
    A.13 B.15 C.18 D.20
    6.(2021•重庆)关于x的分式方程+1=的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是(  )
    A.﹣5 B.﹣4 C.﹣3 D.﹣2
    四.反比例函数系数k的几何意义(共1小题)
    7.(2021•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为(  )

    A. B. C.2 D.3
    五.反比例函数图象上点的坐标特征(共1小题)
    8.(2023•重庆)反比例函数y=的图象一定经过的点是(  )
    A.(﹣3,2) B.(2,﹣3) C.(﹣2,﹣4) D.(2,3)
    六.平行线的性质(共1小题)
    9.(2023•重庆)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为(  )

    A.27° B.53° C.63° D.117°
    七.正方形的性质(共2小题)
    10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为(  )

    A.50° B.55° C.65° D.70°
    11.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为(  )

    A.60° B.65° C.75° D.80°
    八.切线的性质(共1小题)
    12.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为(  )

    A. B. C. D.3

    重庆市B卷2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类
    参考答案与试题解析
    一.规律型:图形的变化类(共2小题)
    1.(2023•重庆)用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,…,按此规律排列下去,则第⑦个图案中圆圈的个数为(  )

    A.14 B.20 C.23 D.26
    【答案】B
    【解答】解:第①个图案中有2个圆圈,
    第②个图案中有2+3×1=5个圆圈,
    第③个图案中有2+3×2=8个圆圈,
    第④个图案中有2+3×3=11个圆圈,
    ...,
    则第⑦个图案中圆圈的个数为:2+3×6=20,
    故选:B.
    2.(2022•重庆)把菱形按照如图所示的规律拼图案,其中第①个图案中有1个菱形,第②个图案中有3个菱形,第③个图案中有5个菱形,…,按此规律排列下去,则第⑥个图案中菱形的个数为(  )

    A.15 B.13 C.11 D.9
    【答案】C
    【解答】解:由图形知,第①个图案中有1个菱形,
    第②个图案中有3个菱形,即1+2=3,
    第③个图案中有5个菱形即1+2+2=5,
    ……
    则第n个图案中菱形有1+2(n﹣1)=(2n﹣1)个,
    ∴第⑥个图案中有2×6﹣1=11个菱形,
    故选:C.
    二.整式的加减(共2小题)
    3.(2023•重庆)在多项式x﹣y﹣z﹣m﹣n(其中x>y>z>m>n)中,对相邻的两个字母间任意添加绝对值符号,添加绝对值符号后仍只有减法运算,然后进行去绝对值运算,称此为“绝对操作”.例如:x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n,|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n,….下列说法:
    ①存在“绝对操作”,使其运算结果与原多项式相等;
    ②不存在“绝对操作”,使其运算结果与原多项式之和为0;
    ③所有的“绝对操作”共有7种不同运算结果.
    其中正确的个数是(  )
    A.0 B.1 C.2 D.3
    【答案】C
    【解答】解:|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,故说法①正确.
    若使其运算结果与原多项式之和为0,需出现﹣x,
    显然无论怎么添加绝对值,都无法使x的符号为负号,故说法②正确.
    当添加一个绝对值时,共有4种情况,分别是|x﹣y|﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n;x﹣|y﹣z|﹣m﹣n=x﹣y+z﹣m﹣n;x﹣y﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;x﹣y﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n.当添加两个绝对值时,共有3种情况,分别是|x﹣y|﹣|z﹣m|﹣n=x﹣y﹣z+m﹣n;|x﹣y|﹣z﹣|m﹣n|=x﹣y﹣z﹣m+n;x﹣|y﹣z|﹣|m﹣n|=x﹣y+z﹣m+n.共有7种情况;
    有两对运算结果相同,故共有5种不同运算结果,故说法③不符合题意.
    故选:C.
    4.(2022•重庆)对多项式x﹣y﹣z﹣m﹣n任意加括号后仍然只含减法运算并将所得式子化简,称之为“加算操作”,例如:(x﹣y)﹣(z﹣m﹣n)=x﹣y﹣z+m+n,x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n,…,
    给出下列说法:
    ①至少存在一种“加算操作”,使其结果与原多项式相等;
    ②不存在任何“加算操作”,使其结果与原多项式之和为0;
    ③所有的“加算操作”共有8种不同的结果.
    以上说法中正确的个数为(  )
    A.0 B.1 C.2 D.3
    【答案】D
    【解答】解:①如(x﹣y)﹣z﹣m﹣n=x﹣y﹣z﹣m﹣n,(x﹣y﹣z)﹣m﹣n=x﹣y﹣z﹣m﹣n,故①符合题意;
    ②x﹣y﹣z﹣m﹣n的相反数为﹣x+y+z+m+n,不论怎么加括号都得不到这个代数式,故②符合题意;
    ③第1种:结果与原多项式相等;
    第2种:x﹣(y﹣z)﹣m﹣n=x﹣y+z﹣m﹣n;
    第3种:x﹣(y﹣z)﹣(m﹣n)=x﹣y+z﹣m+n;
    第4种:x﹣(y﹣z﹣m)﹣n=x﹣y+z+m﹣n;
    第5种:x﹣(y﹣z﹣m﹣n)=x﹣y+z+m+n;
    第6种:x﹣y﹣(z﹣m)﹣n=x﹣y﹣z+m﹣n;
    第7种:x﹣y﹣(z﹣m﹣n)=x﹣y﹣z+m+n;
    第8种:x﹣y﹣z﹣(m﹣n)=x﹣y﹣z﹣m+n;故③符合题意;
    正确的个数为3,
    故选:D.
    三.分式方程的解(共2小题)
    5.(2022•重庆)关于x的分式方程+=1的解为正数,且关于y的不等式组的解集为y≥5,则所有满足条件的整数a的值之和是(  )
    A.13 B.15 C.18 D.20
    【答案】A
    【解答】解:解分式方程得:x=a﹣2,
    ∵x>0且x≠3,
    ∴a﹣2>0且a﹣2≠3,
    ∴a>2且a≠5,
    解不等式组得:,
    ∵不等式组的解集为y≥5,
    ∴<5,
    ∴a<7,
    ∴2<a<7且a≠5,
    ∴所有满足条件的整数a的值之和为3+4+6=13,
    故选:A.
    6.(2021•重庆)关于x的分式方程+1=的解为正数,且使关于y的一元一次不等式组有解,则所有满足条件的整数a的值之和是(  )
    A.﹣5 B.﹣4 C.﹣3 D.﹣2
    【答案】B
    【解答】解:关于x的分式方程+1=的解为x=,
    ∵关于x的分式方程+1=的解为正数,
    ∴a+4>0,
    ∴a>﹣4,
    ∵关于x的分式方程+1=有可能产生增根2,
    ∴,
    ∴a≠﹣1,
    解关于y的一元一次不等式组得,
    ∵关于y的一元一次不等式组有解,
    ∴a﹣2<0,
    ∴a<2,
    综上,﹣4<a<2且a≠﹣1,
    ∵a为整数,
    ∴a=﹣3或﹣2或0或1,
    ∴满足条件的整数a的值之和是:﹣3﹣2+0+1=﹣4,
    故选:B.
    四.反比例函数系数k的几何意义(共1小题)
    7.(2021•重庆)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为(  )

    A. B. C.2 D.3
    【答案】D
    【解答】解:设A(a,0),
    ∵矩形ABCD,
    ∴D(a,),
    ∵矩形ABCD,E为AC的中点,
    则E也为BD的中点,
    ∵点B在x轴上,
    ∴E的纵坐标为,
    ∴,
    ∵E为AC的中点,
    ∴点C(3a,),
    ∴点F(3a,),
    ∵△AEF的面积为1,AE=EC,
    ∴S△ACF=2,
    ∴,
    解得:k=3.
    故选:D.
    五.反比例函数图象上点的坐标特征(共1小题)
    8.(2023•重庆)反比例函数y=的图象一定经过的点是(  )
    A.(﹣3,2) B.(2,﹣3) C.(﹣2,﹣4) D.(2,3)
    【答案】D
    【解答】解:反比例函数y=中k=6,
    A、∵(﹣3)×2=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;
    B、∵2×(﹣3)=﹣6≠6,∴此点不在函数图象上,故本选项不合题意;
    C、∵﹣2×(﹣4)=8≠6,∴此点不在函数图象上,故本选项不合题意;
    D、∵2×3=6,∴此点在函数图象上,故本选项符合题意.
    故选:D.
    六.平行线的性质(共1小题)
    9.(2023•重庆)如图,直线a,b被直线c所截,若a∥b,∠1=63°,则∠2的度数为(  )

    A.27° B.53° C.63° D.117°
    【答案】C
    【解答】解:∵a∥b,
    ∴∠1=∠2,
    ∵∠1=63°,
    ∴∠2=63°,
    故选:C.
    七.正方形的性质(共2小题)
    10.(2022•重庆)如图,在正方形ABCD中,对角线AC、BD相交于点O.E、F分别为AC、BD上一点,且OE=OF,连接AF,BE,EF.若∠AFE=25°,则∠CBE的度数为(  )

    A.50° B.55° C.65° D.70°
    【答案】C
    【解答】解:∵四边形ABCD是正方形,
    ∴∠AOB=∠AOD=90°,OA=OB=OD=OC.
    ∵OE=OF,
    ∴△OEF为等腰直角三角形,
    ∴∠OEF=∠OFE=45°,
    ∵∠AFE=25°,
    ∴∠AFO=∠AFE+∠OFE=70°,
    ∴∠FAO=20°.
    在△AOF和△BOE中,

    ∴△AOF≌△BOE(SAS).
    ∴∠FAO=∠EBO=20°,
    ∵OB=OC,
    ∴△OBC是等腰直角三角形,
    ∴∠OBC=∠OCB=45°,
    ∴∠CBE=∠EBO+∠OBC=65°.
    故选:C.
    11.(2021•重庆)如图,把含30°的直角三角板PMN放置在正方形ABCD中,∠PMN=30°,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则∠AMP的度数为(  )

    A.60° B.65° C.75° D.80°
    【答案】C
    【解答】解:∵四边形ABCD是正方形,
    ∴∠ABD=45°,
    在Rt△PMN中,∠MPN=90°,
    ∵O为MN的中点,
    ∴OP=,
    ∵∠PMN=30°,
    ∴∠MPO=30°,
    ∴∠AMP=∠MPO+∠MBP
    =30°+45°
    =75°,
    故选:C.
    八.切线的性质(共1小题)
    12.(2022•重庆)如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为(  )

    A. B. C. D.3
    【答案】D
    【解答】解:如图,连结OC,
    ∵PC是⊙O的切线,
    ∴∠PCO=90°,
    ∵OC=OA,
    ∴∠A=∠OCA,
    ∵AC=PC,
    ∴∠P=∠A,
    设∠A=∠OCA=∠P=x°,
    在△APC中,∠A+∠P+∠PCA=180°,
    ∴x+x+90+x=180,
    ∴x=30,
    ∴∠P=30°,
    ∵∠PCO=90°,
    ∴OP=2OC=2r,
    在Rt△POC中,tanP=,
    ∴=,
    ∴r=3,
    ∴PB=OP﹣OB=2r﹣r=r=3.
    故选:D.


    相关试卷

    陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类:

    这是一份陕西省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共15页。

    内蒙古赤峰2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类(含答案):

    这是一份内蒙古赤峰2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类(含答案),共23页。

    河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类:

    这是一份河北省2021-2023三年中考数学真题分类汇编-01选择题(提升题)知识点分类,共27页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map