所属成套资源:浙江各地区2023年各地区中考数学模拟(一模、二模)试题按题型难易度分层分类汇编
- 浙江宁波市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(8套)-02填空题(提升题) 试卷 0 次下载
- 浙江宁波市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(8套)-03解答题(较难题) 试卷 0 次下载
- 浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(基础题)2 试卷 0 次下载
- 浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(容易题) 试卷 0 次下载
- 浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(提升题) 试卷 1 次下载
浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(基础题)1
展开
这是一份浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(基础题)1,共15页。试卷主要包含了较为合理等内容,欢迎下载使用。
浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(基础题)1
一.有理数的混合运算(共2小题)
1.(2023•杭州一模)十字路口红绿灯时长设置是根据路口的实际车流状况来分配的.据统计,某十字路口每天的车流量中,东西走向直行与左转车辆分别约占总流量,;南北走向直行与左转车辆分别约占总流量,.因右转车辆不受红绿灯限制,所以在设置红绿灯时,按东西走向直行、左转,南北走向直行、左转的次序依次亮起绿灯作为一个周期时间(当某方向绿灯亮起时,其他3个方向全为红灯),若一个周期时间为2分钟,则应设置南北走向直行绿灯时长为( )较为合理.
A.12秒 B.16秒 C.18秒 D.24秒
2.(2023•杭州模拟)下列选项中的运算正确的是( )
A.2×(﹣3)=6 B.|﹣2|=﹣2 C. D.0﹣2=﹣2
二.科学记数法—表示较大的数(共1小题)
3.(2023•杭州一模)国家统计局网站公布,我国2022年全年完成造林面积约为3830000公顷.数据3830000用科学记数法可以表示为( )
A.383×104 B.38.3×105 C.3.83×106 D.0.383×107
三.算术平方根(共1小题)
4.(2023•临安区一模)下列各式中,正确的是( )
A. B. C. D.
四.列代数式(共1小题)
5.(2023•淳安县一模)苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.5(a+b)元 D.(2a+3b)元
五.由实际问题抽象出二元一次方程组(共1小题)
6.(2023•临安区一模)《九章算术》中有一道题,原文是:“今有二马、一牛价过一万,如半马之价;一马、二牛价不满一万,如半牛之价.问牛、马价各几何?”意思是:今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛,每匹马的价格各是多少?可设每匹马价格为x钱,每头牛价格为y钱,下列式子正确的是( )
A.
B.
C.
D.
六.解一元二次方程-因式分解法(共1小题)
7.(2023•临安区一模)方程(x﹣2)2=2x(x﹣2)的解是( )
A.x1=2,x2=1 B.x1=2,x2=﹣2 C.x1=2,x2=0 D.x1=2,x2=﹣1
七.由实际问题抽象出一元二次方程(共1小题)
8.(2023•杭州一模)中国已经成为全球最大并且最有活力的新能源汽车市场.中国汽车工业协会数据显示,某品牌新能源汽车2022年5月份销量为10万辆,7月份销量为14.5万辆.设该品牌新能源汽车的月平均增长率为x(x>0),则( )
A.10(1+2x)=14.5 B.14.5(1﹣x)2=10
C.10x2=14.5 D.10(1+x)2=14.5
八.不等式的性质(共1小题)
9.(2023•杭州一模)已知a,b,c是实数,若a>b,c<0,则( )
A.a+b>c B.a+c>b C.a>b+c D.2a>b+c
九.一次函数图象与系数的关系(共1小题)
10.(2023•淳安县一模)已知一次函数y=(m﹣2023)x+m+2023,其中y的值随x的值增大而减小,则m的取值范围是( )
A.m<2023 B.m>2023 C.m=2023 D.m>0
一十.二次函数的性质(共1小题)
11.(2023•淳安县一模)已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是( )
A. B. C.m≥1 D.m≤1
一十一.抛物线与x轴的交点(共1小题)
12.(2023•临安区一模)已知抛物线,该抛物线经过平移得到新抛物线y2,新抛物线与x轴正半轴交于两点,且交点的横坐标在1到2之间,若点P(1,p),Q(2,q)在抛物线y2的图象上,则PQ的范围是( )
A.0≤PQ<1 B.1≤PQ<2 C. D.
一十二.平行线的性质(共1小题)
13.(2023•杭州一模)如图,已知AB∥CD,BC平分∠ABD.若∠D=50°,则∠C=( )
A.50° B.65° C.75° D.80°
一十三.三角形三边关系(共1小题)
14.(2023•淳安县一模)袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有8cm,7cm,13cm和15cm四种规格,小朦同学已经取了8cm和7cm两根木棍,那么第三根木棍不可能取( )
A.15cm B.13cm C.8cm D.7cm
一十四.多边形内角与外角(共1小题)
15.(2023•杭州一模)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=( )
A.90° B.180° C.120° D.270°
一十五.圆心角、弧、弦的关系(共1小题)
16.(2023•临安区一模)如图,已知AC是直径,AB=6,BC=8,D是弧BC的中点,则DE=( )
A.1 B.2 C.3 D.4
一十六.锐角三角函数的定义(共1小题)
17.(2023•淳安县一模)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.则下列各式中,正确的是( )
A. B. C. D.
一十七.互余两角三角函数的关系(共1小题)
18.(2023•杭州一模)在△ABC中,∠C=90°,sinB=,则tanA=( )
A. B. C. D.
一十八.众数(共1小题)
19.(2023•临安区一模)一组数据﹣3,a,2,3,5有唯一的众数3,则这组数据的中位数是( )
A.﹣2 B.1 C.3 D.5
一十九.方差(共2小题)
20.(2023•桐庐县一模)方方同学五次“立定跳远”的测试成绩分别6分,8分,9分,8分,9分,对这些数据分析正确的是( )
A.平均数是9 B.中位数是8 C.众数是9 D.方差是6
21.(2023•淳安县一模)某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如表所示:
时间/h
2
3
4
5
6
人数
1
3
2
3
1
关于志愿者服务时间的描述正确的是( )
A.众数是6 B.中位数是4 C.平均数是3 D.方差是1
二十.概率公式(共1小题)
22.(2023•杭州一模)一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是( )
A. B. C. D.
浙江省杭州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(9套)-01选择题(基础题)1
参考答案与试题解析
一.有理数的混合运算(共2小题)
1.(2023•杭州一模)十字路口红绿灯时长设置是根据路口的实际车流状况来分配的.据统计,某十字路口每天的车流量中,东西走向直行与左转车辆分别约占总流量,;南北走向直行与左转车辆分别约占总流量,.因右转车辆不受红绿灯限制,所以在设置红绿灯时,按东西走向直行、左转,南北走向直行、左转的次序依次亮起绿灯作为一个周期时间(当某方向绿灯亮起时,其他3个方向全为红灯),若一个周期时间为2分钟,则应设置南北走向直行绿灯时长为( )较为合理.
A.12秒 B.16秒 C.18秒 D.24秒
【答案】B
【解答】解:∵右转车辆不受红绿灯限制,
∴南北走向直行占题四种走向流量的比例为:=,
∴一个周期时间为2分钟,设置南北走向直行绿灯时长为=16s,
故选:B.
2.(2023•杭州模拟)下列选项中的运算正确的是( )
A.2×(﹣3)=6 B.|﹣2|=﹣2 C. D.0﹣2=﹣2
【答案】D
【解答】解:A、2×(﹣3)=﹣6,故A不符合题意;
B、|﹣2|=2,故B不符合题意;
C、×(﹣2)=﹣1,故C不符合题意;
D、0﹣2=﹣2故D符合题意;
故选:D.
二.科学记数法—表示较大的数(共1小题)
3.(2023•杭州一模)国家统计局网站公布,我国2022年全年完成造林面积约为3830000公顷.数据3830000用科学记数法可以表示为( )
A.383×104 B.38.3×105 C.3.83×106 D.0.383×107
【答案】C
【解答】解:3830000的绝对值大于10表示成a×10n的形式,
∵a=3.83,n=7﹣1=6,
∴3830000表示成3.83×106,
故选:C.
三.算术平方根(共1小题)
4.(2023•临安区一模)下列各式中,正确的是( )
A. B. C. D.
【答案】A
【解答】解:=3,A选项正确;
=﹣3无意义,B选项错误;
=5,C选项错误;
=4,D选项错误.
故选:A.
四.列代数式(共1小题)
5.(2023•淳安县一模)苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.5(a+b)元 D.(2a+3b)元
【答案】D
【解答】解:根据题意得:买2千克苹果和3千克香蕉共需(2a+3b)元.
故选:D.
五.由实际问题抽象出二元一次方程组(共1小题)
6.(2023•临安区一模)《九章算术》中有一道题,原文是:“今有二马、一牛价过一万,如半马之价;一马、二牛价不满一万,如半牛之价.问牛、马价各几何?”意思是:今有2匹马、1头牛的总价超过10000钱,其超出的钱数相当于匹马的价格.1匹马、2头牛的总价不足10000钱,所差的钱数相当于头牛的价格.问每头牛,每匹马的价格各是多少?可设每匹马价格为x钱,每头牛价格为y钱,下列式子正确的是( )
A.
B.
C.
D.
【答案】B
【解答】解:依题意,得:.
故选:B.
六.解一元二次方程-因式分解法(共1小题)
7.(2023•临安区一模)方程(x﹣2)2=2x(x﹣2)的解是( )
A.x1=2,x2=1 B.x1=2,x2=﹣2 C.x1=2,x2=0 D.x1=2,x2=﹣1
【答案】B
【解答】解:(x﹣2)2﹣2x(x﹣2)=0,
(x﹣2)(x﹣2﹣2x)=0,
x﹣2=0或x﹣2﹣2x=0,
所以x1=2,x2=﹣2.
故选:B.
七.由实际问题抽象出一元二次方程(共1小题)
8.(2023•杭州一模)中国已经成为全球最大并且最有活力的新能源汽车市场.中国汽车工业协会数据显示,某品牌新能源汽车2022年5月份销量为10万辆,7月份销量为14.5万辆.设该品牌新能源汽车的月平均增长率为x(x>0),则( )
A.10(1+2x)=14.5 B.14.5(1﹣x)2=10
C.10x2=14.5 D.10(1+x)2=14.5
【答案】D
【解答】解:设该品牌新能源汽车的月平均增长率为x(x>0).
∵5月份销量为10万辆,
∴6月份销量为10(1+x)万辆,
∴7月份销量为10(1+x)(1+x)=10(1+x)2万辆.
∵7月份销量为14.5万辆,
∴可列方程为10(1+x)2=14.5.
故选:D.
八.不等式的性质(共1小题)
9.(2023•杭州一模)已知a,b,c是实数,若a>b,c<0,则( )
A.a+b>c B.a+c>b C.a>b+c D.2a>b+c
【答案】C
【解答】解:A选项,无法确定a与c、b与c的大小关系,A错;
B选项,因为c<0,所以a>a+c,又因为a>b,无法确定a+c>b正确,B错;
C选项,因为c<0,所以b>b+c,又因为a>b,所以a>b>b+c,C项正确;
D选项,由C选项可知a>b+c,若a<0,则2a<a,无法确定2a>b+c正确,D错.
故选:C.
九.一次函数图象与系数的关系(共1小题)
10.(2023•淳安县一模)已知一次函数y=(m﹣2023)x+m+2023,其中y的值随x的值增大而减小,则m的取值范围是( )
A.m<2023 B.m>2023 C.m=2023 D.m>0
【答案】A
【解答】解:∵一次函数y=(m﹣2023)x+m+2023,其中y的值随x的值增大而减小,
∴m﹣2023<0,
∴m<2023,
故选:A.
一十.二次函数的性质(共1小题)
11.(2023•淳安县一模)已知点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,若当x≤2时,y随x的增大而减小,则m的取值范围是( )
A. B. C.m≥1 D.m≤1
【答案】B
【解答】解:∵点A(m,n)、B(m+1,n)是二次函数y=x2+bx+c图象上的两个点,
∴该二次函数图象的对称轴为直线,且开口向上,
∵当x≤2时,y随x的增大而减小,
∴该二次函数图象的对称轴为直线x=2或在其右侧,
∴,
解得,
故选:B.
一十一.抛物线与x轴的交点(共1小题)
12.(2023•临安区一模)已知抛物线,该抛物线经过平移得到新抛物线y2,新抛物线与x轴正半轴交于两点,且交点的横坐标在1到2之间,若点P(1,p),Q(2,q)在抛物线y2的图象上,则PQ的范围是( )
A.0≤PQ<1 B.1≤PQ<2 C. D.
【答案】C
【解答】解:设平移后的抛物线为y=(x﹣m)2+h,
∵新抛物线与x轴正半轴交于两点,且交点的横坐标在1到2之间,
∴对称轴x=m在1到2之间,
∴1<m<2,
∵p=(1﹣m)2+h,q=(2﹣m)2+h,
∴|p﹣q|=|(1﹣m)2﹣(2﹣m)2|=|2m﹣3|
∴=,
∵1<m<2,
∴当m=时PQ最小,最小值为1,
当m=1或2时,PQ最大.
最大值为(但取不到这个值),
∴1≤PQ<
故选:C.
一十二.平行线的性质(共1小题)
13.(2023•杭州一模)如图,已知AB∥CD,BC平分∠ABD.若∠D=50°,则∠C=( )
A.50° B.65° C.75° D.80°
【答案】B
【解答】解:∵AB∥CD,BC平分∠ABD,
∴∠ABC=∠C=∠CBD,
∵∠C+∠CBD+∠D=180°,
∴,
故答案为:B.
一十三.三角形三边关系(共1小题)
14.(2023•淳安县一模)袁老师在课堂上组织学生用小棍摆三角形,小棍的长度有8cm,7cm,13cm和15cm四种规格,小朦同学已经取了8cm和7cm两根木棍,那么第三根木棍不可能取( )
A.15cm B.13cm C.8cm D.7cm
【答案】A
【解答】解:设第三根木棍的长为xcm,
则8﹣7<x<8+7,即1<x<15,
∴第三根木棍不可能取15cm,
故选:A.
一十四.多边形内角与外角(共1小题)
15.(2023•杭州一模)如图,五边形ABCDE中,AB∥CD,∠1,∠2,∠3分别是∠BAE,∠AED,∠EDC的外角,则∠1+∠2+∠3=( )
A.90° B.180° C.120° D.270°
【答案】B
【解答】解:如图,∵AB∥CD,
∴∠4+∠5=180°,
∵∠1+∠2+∠3+∠4+∠5=360°,
∴∠1+∠2+∠3=180°.
故选:B.
一十五.圆心角、弧、弦的关系(共1小题)
16.(2023•临安区一模)如图,已知AC是直径,AB=6,BC=8,D是弧BC的中点,则DE=( )
A.1 B.2 C.3 D.4
【答案】B
【解答】解:连接OB,
∵D是弧BC的中点,
∴∠BOD=∠COD,
∵OB=OD,
∴OD⊥BC,BE=BC=×8=4,
∵AC是圆的直径,
∴∠ABC=90°,
∴AC===10,
∴OB=AC=5,
∴OE===3,
∴DE=OD﹣OE=5﹣3=2.
故选:B.
一十六.锐角三角函数的定义(共1小题)
17.(2023•淳安县一模)在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c.则下列各式中,正确的是( )
A. B. C. D.
【答案】C
【解答】解:在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别是a、b、c,
∴sinA==,
故选:C.
一十七.互余两角三角函数的关系(共1小题)
18.(2023•杭州一模)在△ABC中,∠C=90°,sinB=,则tanA=( )
A. B. C. D.
【答案】B
【解答】解:∵∠C=90°,sinB==,
∴令AC=4x,则AB=5x,
∴BC==3x,
∴tanA===.
故选:B.
一十八.众数(共1小题)
19.(2023•临安区一模)一组数据﹣3,a,2,3,5有唯一的众数3,则这组数据的中位数是( )
A.﹣2 B.1 C.3 D.5
【答案】C
【解答】解:∵数据:﹣3,a,2,3,5有唯一的众数3,
∴a=3,
∴这组数据按大小排序后为:﹣3,2,3,3,5,
∴这组数据的中位数为3.
故选:C.
一十九.方差(共2小题)
20.(2023•桐庐县一模)方方同学五次“立定跳远”的测试成绩分别6分,8分,9分,8分,9分,对这些数据分析正确的是( )
A.平均数是9 B.中位数是8 C.众数是9 D.方差是6
【答案】B
【解答】解:平均数为=8,故A选项说法错误,不符合题意;
把这5个数从小到大排列为6、8、8、9、9,排在最中间的数是8,故中位数是8,故B选项说法正确,符合题意;
众数是8或9,故C选项说法错误,不符合题意;
方差为×[(6﹣8)2+2×(8﹣8)2+2×(9﹣8)2]=1.2,故D选项说法错误,不符合题意.
故选:B.
21.(2023•淳安县一模)某中学青年志愿者协会的10名志愿者,一周的社区志愿服务时间如表所示:
时间/h
2
3
4
5
6
人数
1
3
2
3
1
关于志愿者服务时间的描述正确的是( )
A.众数是6 B.中位数是4 C.平均数是3 D.方差是1
【答案】B
【解答】解:这组数据的众数是3和5,中位数是=4,平均数为=4(h),
则方差为×[(2﹣4)2+3×(3﹣4)2+2×(4﹣4)2+3×(5﹣4)2+(6﹣4)2]=1.4,
故选:B.
二十.概率公式(共1小题)
22.(2023•杭州一模)一个不透明的袋子中只装有8个除颜色外完全相同的小球,其中4个红球,3个黄球,1个黑球.从中随机摸出一个小球,摸到红球的概率是( )
A. B. C. D.
【答案】A
【解答】解:从中随机摸出一个小球,摸到红球的概率是.
故选:A.
相关试卷
这是一份山东省泰安市2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题),共16页。
这是一份山东省菏泽市2023年各地区中考考数学模拟(一模)试题按题型难易度分层分类汇编-01选择题(基础题),共22页。
这是一份浙江温州市2023年各地区中考数学模拟(一模)试题按题型难易度分层分类汇编(7套)-01选择题(基础题),共13页。