终身会员
搜索
    上传资料 赚现金

    高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析)

    立即下载
    加入资料篮
    高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析)第1页
    高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析)第2页
    高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析)第3页
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析)

    展开

    这是一份高考数学压轴难题归纳总结培优专题3.11 切线处理情况多曲线不同法定度 (含解析),共20页。


    题型综述

    圆锥曲线的切线问题有两种处理思路思路1,导数法,将圆锥曲线方程化为函数,利用导数法求出函数在点处的切线方程,特别是焦点在轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于(或y)的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式,即可解出切线方程,注意关于(或y)的一元二次方程的二次项系数不为0这一条件,圆锥曲线的切线问题要根据曲线不同,选择不同的方法.

    典例指引】

    类型一 导数法求抛物线切线

    例1 【2017课表1,文20】AB为曲线Cy=上两点,AB的横坐标之和为4.

    (1)求直线AB的斜率;

    (2)设M为曲线C上一点,CM处的切线与直线AB平行,且AMBM,求直线AB的方程.

    类型二 椭圆的切线问题

    例22014广东20)(14分)已知椭圆的一个焦点为,离心率为.

    1)求椭圆C的标准方程;

    2)若动点为椭圆外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.

    类型三 直线与椭圆的一个交点

    例3.【2013年高考安徽卷】已知椭圆的焦距为4,且过点.

    )求椭圆C的方程;

    )设为椭圆上一点,过点轴的垂线,垂足为.取点,连接,过点的垂线交轴于点.点是点关于轴的对称点,作直线,问这样作出的直线是否与椭圆C一定有唯一的公共点?并说明理由.

    【解析】(1)因为椭圆过点

               

           椭圆C的方程是

    (2)

    由题意,各点的坐标如上图所示,

    的直线方程:

    化简得

    所以带入

    求得最后

    所以直线与椭圆只有一个公共点.

    类型四  待定系数求抛物线的切线问题

    例4 【2013年高考广东卷】已知抛物线顶点为原点,其焦点直线距离为.设直线的点,过抛物线两条切线其中切点

    (1) 求抛物线的方程

    (2) 当直线上的定点时,求直线方程;

    (3) 当点直线移动时,求最小值

    (3抛物线的定义可知

    所以

    联立消去

    取得最小值

    【扩展链接】

    1. 椭圆的切线方程:椭圆上一点处的切线方程是;椭圆外一点所引两条切线方程是.
    2. 双曲线的切线方程:双曲线上一点处的切线方程是;双曲线上一点所引两条切线方程是.
    3. 抛物线的切线方程:抛物线上一点处的切线方程是;抛物线上一点所引两条切线方程是.

    4.设抛物线的焦点为,若过点的直线分别与抛物线相切于两点,则.

    5.设椭圆:的焦点为,若过点的直线分别与椭圆相切于两点,则.

    6.设双曲线:的焦点为,若过点的直线分别与椭圆相切于两点,则.

    同步训练】

    1.已知椭圆与抛物线y2=2px(p>0)共焦点F2,抛物线上的点M到y轴的距离等于|MF2|﹣1,且椭圆与抛物线的交点Q满足|QF2|=

    (1)求抛物线的方程和椭圆的方程;

    (2)过抛物线上的点P作抛物线的切线y=kx+m交椭圆于A、B两点,求此切线在x轴上的截距的取值范围.

    【思路点拨】(1)由抛物线的性质,求得x=﹣1是抛物线y2=2px的准线,则,求得p的值,求得焦点坐标,代入抛物线方程求得Q点坐标,利用椭圆的定义,即可求得a的值,由b2=a2﹣c2=8,即可求得椭圆方程;

    (2)将直线分别代入抛物线,由△=0,求得km=1,将直线方程代入椭圆方程,求得△>0,代入即可求得m的取值范围,切线在x轴上的截距为,又,即可求得切线在x轴上的截距的取值范围.

    ( 2)显然k≠0,m≠0,

    ,消去x,得ky2﹣4y+4m=0,

    由题意知△1=16﹣16km=0,得km=1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(7分)

    ,消去y,得(9k2+8)x2+18kmx+9m2﹣72=0,

    其中(9k2+8)(9m2﹣72)>0,

    化简得9k2﹣m2+8>0,﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)

    ,得m4﹣8m2﹣9<0,解得0<m2<9,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(10分)

    切线在x轴上的截距为,又

    ∴切线在x轴上的截距的取值范围是(﹣9,0).﹣﹣(12分)

    2.(2017•鸡泽县校级模拟)已知椭圆C:+=1(a>b>0)的离心率为,其中一个顶点是双曲线=1的焦点.

    (1)求椭圆C的标准方程;

    (2)过点P(0,3)的直线l与椭圆C相交于不同的两点A,B,过点A,B分别作椭圆的两条切线,求其交点的轨迹方程.

    【思路点拨】(1)由椭圆的离心率为,其中一个顶点是双曲线=1的焦点,旬出方程组求出a,b,c,由此能求出椭圆C的标准方程.

    (2)当直线l的斜率存在时,设直线l的方程为y=kx+3,设A(x1,y1),B(x2,y2),求出椭圆在点A处的切线方程为=1,①椭圆在点B处的切线方程为=1,②,联立①②,得y=,求出交点的轨迹方程为y=.当直线l的斜率不存在时,无交点.由此能过求出过点A,B所作椭圆的两条切线的交点的轨迹方程.

    (2)当直线l的斜率存在时,设直线l的方程为y=kx+3,

    设A(x1,y1),B(x2,y2),

    设在A(x1,y1)处切线方程为y﹣y1=k1(x﹣x1),

    与椭圆C:=1联立

    消去y,得()x2+8k1(﹣k1x1+y1)x+4(﹣k1x1+y12﹣75=0,

    由△=0,得[8k1(﹣k1x1+y1)]2﹣4(4+3)[4(﹣k1x1+y12﹣75]=0,

    化简,得(

    ,得4x12﹣100=﹣,4y12﹣75=﹣3x12

    ∴上式化为﹣=0,

    3.设椭圆C:+=1(a>b>0),定义椭圆的“伴随圆”方程为x2+y2=a2+b2;若抛物线x2=4y的焦点与椭圆C的一个短轴重合,且椭圆C的离心率为

    (1)求椭圆C的方程和“伴随圆”E的方程;

    (2)过“伴随圆”E上任意一点P作椭圆C的两条切线PA,PB,A,B为切点,延长PA与“伴随圆”E交于点Q,O为坐标原点.

    ①证明:PA⊥PB;

    ②若直线OP,OQ的斜率存在,设其分别为k1,k2,试判断k1k2是否为定值,若是,求出该值;若不是,请说明理由.

    【思路点拨】(1)由抛物线的方程,求得b的值,利用离心率公式,即可求得a的值,求得椭圆方程;

    (2)①设直线y=kx+m,代入椭圆方程,利用韦达定理及直线的斜率公式,即可求得kPA•kPB=﹣1,即可证明PA⊥PB;

    ②将直线方程代入圆方程,利用韦达定理及直线的斜率公式求得k1k2=,代入即可求得k1k2=﹣

    当切线的斜率不存在或等于零结论显然成立,

    ∴PA⊥PB,

    ②当直线PQ的斜率存在时,

    由①可知直线PQ的方程为y=kx+m,

    ,整理得:(k2+1)x2+2kmx+m2﹣4=0,

    则△=4k2m2﹣4(k2+1)(m2﹣4),将m2=3k2+1,代入整理△=4k2+12>0,

    设P(x1,y1),Q(x2,y2),则x1+x2=﹣,x1•x2=

    ∴k1k2===

    =

    将m2=3k2+1,即可求得求得k1k2=﹣

    当直线PQ的斜率不存在时,易证k1k2=﹣

    ∴综上可知:k1k2=﹣

    4.左、右焦点分别为F1、F2的椭圆C:+=1(a>b>0)经过点Q(0,),P为椭圆上一点,△PF1F2的重心为G,内心为I,IG∥F1F2

    (1)求椭圆C的方程;

    (2)M为直线x﹣y=4上一点,过点M作椭圆C的两条切线MA、MB,A、B为切点,问直线AB是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.

    【思路点拨】(1)由过点Q,则b=,求得,△PF1F2的重心为G点坐标,由IG∥F1F2,|y0|=3r,根据三角形的面积公式可知a=2c,即可求得a和b的值,求得椭圆方程;

    (2)利用椭圆的切线发浓缩,求得直线AB的方程,由点M为直线x﹣y=4上,代入整理即可求得定点坐标.

    (2)设M(x1,y1),A(x2,y2),B(x3,y3)则切线MA,MB的方程分别为.…(7分)

    ∵点M在两条切线上,

    故直线AB的方程为.…(9分)

    又∵点M为直线x﹣y=4上,

    ∴y1=x1﹣4

    即直线AB的方程可化为,整理得(3x+4y)x1=16y+12,

    解得

    因此,直线AB过定点.…(12分)

    5.平面直角坐标系xoy中,椭圆C1+=1(a>b>0)的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6.

    (1)求椭圆的方程;

    (2)A,B是抛物线C2:x2=4y上两点,且A,B处的切线相互垂直,直线AB与椭圆C1相交于C,D两点,求弦|CD|的最大值.

    【思路点拨】(1)由椭圆的离心率为,过椭圆右焦点F作两条相互垂直的弦,当其中一条弦所在直线斜率为0时,两弦长之和为6,列出方程组,求出a,b,由此能求出椭圆方程.

    (2)设直线AB为:y=kx+m,由,得x2﹣4kx﹣4m=0,由此利用韦达定理、直线垂直推导出直线AB过抛物线C1的焦点F,再由,得(1+2k2)x2+4kx﹣2=0,由此利用弦长公式能求出弦|CD|的最大值.

    故切线PA,PB的斜率分别为,kPB=

    再由PA⊥PB,得kPA•kPB=﹣1,

    解得m=1,这说明直线AB过抛物线C1的焦点F,

    ,得(1+2k2)x2+4kx﹣2=0,

    ∴|CD|==≤3.

    当且仅当k=时取等号,

    ∴弦|CD|的最大值为3.

    6.已知椭圆C:(a>b>0)的上、下两个焦点分别为F1,F2,过F1的直线交椭圆于M,N两点,且△MNF2的周长为8,椭圆C的离心率为

    (1)求椭圆C的标准方程;

    (2)已知O为坐标原点,直线l:y=kx+m与椭圆C有且仅有一个公共点,点M',N'是直线l上的两点,且F1M'⊥l,F2N'⊥l,求四边形F1M'N'F2面积S的最大值.

    【思路点拨】(1)由△MNF2的周长为8,求出a=2,再由,求出b,由此能求出椭圆C的标准方程.

    (2)将直线l的方程y=kx+m代入到椭圆方程中,得(4+k2)x2+2kmx+m2﹣4=0.由直线与椭圆仅有一个公共点,利用根的判别式求出m2=4+k2.由此利用弦长公式,结合已知条件能求出四边形F1M'N'F2面积的最大值.

    所以==

    因为四边形F1M'N'F2的面积

    所以=

    令k2+1=t(t≥1),

    ==

    所以当时,S2取得最大值为16,故Smax=4,

    即四边形F1M'N'F2面积的最大值为4.

    7.已知A,B分别是椭圆 的长轴与短轴的一个端点,F1,F2分别是椭圆C的左、右焦点,D椭圆上的一点,△DF1,F2的周长为

    (1)求椭圆C的方程;

    (2)若P是圆x2+y2=7上任一点,过点作P椭圆C的切线,切点分别为M,N,求证:PM⊥PN.

    【思路点拨】(1)由2a+2c=6,,b2+c2=a2,即可求得a和b的值,即可求得椭圆方程;

    (2)分类讨论,当切线PM斜率不存在或者为零时,根据对称性即可求得PM⊥PN;当斜率不为零时,分别求得直线PM,PN的方程,由△=0即可求得k1,k2是方程的两个根,则,则PM⊥PN.

    .∵y0=k1x0+m,∴m=y0﹣k1x0

    .即

    同理:切线PN:y=k2x+t中,

    ∴k1,k2是方程的两个根,

    又∵P在圆上,∴,∴

     

    ∴PM⊥PN.

    综上所述:PM⊥PN.

    8.已知圆M:(x﹣a)2+(y﹣b)2=9,M在抛物线C:x2=2py(p>0)上,圆M过原点且与C的准线相切.

    (Ⅰ) 求C的方程;

    (Ⅱ) 点Q(0,﹣t)(t>0),点P(与Q不重合)在直线l:y=﹣t上运动,过点P作C的两条切线,切点分别为A,B.求证:∠AQO=∠BQO(其中O为坐标原点).

    【思路点拨】(1)由圆M与抛物线准线相切,得

    且圆过又圆过原点,故,可得,解得p=4,即可

    (2) 设A(x1,y1),B(x2,y2),P(m,﹣t),

    可得,即x1,x2为方程x2﹣2mx﹣4t=0的两根,所以x1+x2=2m,x1x2=﹣4t,可得,化简=.可证得∠AQO=∠BQO.

    又因过点P(m,﹣t),故可得,,(7分)

    ,同理可得,(8分)

    所以x1,x2为方程x2﹣2mx﹣4t=0的两根,所以x1+x2=2m,x1x2=﹣4t,(9分)

    因为Q(0,﹣t),所以,(10分)

    化简=.(11分)

    所以∠AQO=∠BQO.(12分)

    9.已知椭圆C:+=1(a>b>0)的长轴长为4,离心率为,右焦点为F.

    (1)求椭圆C的方程;

    (2)直线l与椭圆C相切于点P(不为椭圆C的左、右顶点),直线l与直线x=2交于点A,直线l与直线x=﹣2交于点B,请问∠AFB是否为定值?若不是,请说明理由;若是,请证明.

    【思路点拨】(1)由2a=4,离心率e==,b=即可求得a和b,即可求得椭圆C的方程;

    (2)l的斜率为0时,∠AFB为直角,则∠AFB为定值,当斜率不为0时,将切点代入椭圆方程,求得交点坐标,求得AF和BF的斜率kAF及kBF,即可求得kAF•kBF=﹣1,即可求得∠AFB为定值

    10.已知过抛物线x2=4y的焦点F的直线l与抛物线相交于A、B两点.

    (1)设抛物线在A、B处的切线的交点为M,若点M的横坐标为2,求△ABM的外接圆方程.

    (2)若直线l与椭圆+=1的交点为C,D,问是否存在这样的直线l使|AF|•|CF|=|BF|•|DF|,若存在,求出l的方程;若不存在,说明理由.

    【思路点拨】(1)设,直线AB:,从而得到过A,B,M的圆是以AB为直径的圆,由此结合已知条件能求出圆的方程.

    (2)设,由此利用韦达定理,结合已知条件能求出满足条件的直线方程.

    (2)设

    设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),

    ∴x1+x2=4k,x1x2=﹣4

    ,…①

    由①②得k=0或k2=1,k=±1,

    经检验k=0,k=±1时,A、B、C、D四点各异,且满足要求

    故直线l存在,且方程为y=±x+1或y=1…(13分)

    11.在平面直角坐标系中,已知点F(1,0),直线l:x=﹣1,动直线l′垂直l于点H,线段HF的垂直平分线交l′于点P,设点P的轨迹为C.

    (1)求曲线C的方程;

    (2)以曲线C上的点P(x0,y0)(y0>0)为切点作曲线C的切线l1,设l1分别与x,y轴交于A,B两点,且l1恰与以定点M(a,0)(a>2)为圆心的圆相切,当圆M的面积最小时,求△ABF与△PAM面积的比.

    【思路点拨】(1)由丨PH丨=丨PF丨,根据抛物线的定义,点P的轨迹是以l为准线,F为焦点的抛物线,即可求得抛物线方程;

    (2)由y>0时,求导,求得切线斜率,利用点斜式方程即可求得切线方程,取得A和B点坐标,利用点到直线的距离公式,根据基本不等式的性质,当P(a﹣2,2)时,满足题意的圆M的面积最小,求得A和B点坐标,利用三角形的面积公式即可求得△ABF与△PAM面积的比.

    A(﹣x0,0),…(7分)

    点M(a,0)到切线l的距离d==+≥2

    (当且仅当y0=2时,取等号).

    ∴当P(a﹣2,2)时,满足题意的圆M的面积最小. …(9分)

    ∴A(2﹣a,0),B(0,),

    ∴S△ABF=丨1﹣(2﹣a)丨•丨丨=(a﹣1)

    S△PAM=丨a﹣(2﹣a)丨•丨2丨=2(a﹣1),…(11分)

    =

    △ABF与△PAM面积的比.…(12分)

    12.在平面直角坐标系中,已知椭圆)的左焦点为,且点上.

    (1)求椭圆的方程;

    (2)设直线同时与椭圆和抛物线相切,求直线的方程.

    【思路点拨】(1)因为椭圆C1的左焦点为F1(﹣1,0),所以c=1,点P(0,1)代入椭圆,得b=1,由此能求出椭圆C1的方程;(2)设直线l的方程为y=kx+m,由,得(1+2k2)x2+4kmx+2m2﹣2=0.因为直线l与椭圆C1相切,所以△=0,得到两个变量的等量关系.再由直线和抛物线相切,联立方程,运用判别式为0,再构造两个变量的等量关系,从而解出两个变量的值,由此能求出直线l的方程.

     

    相关试卷

    高考数学压轴难题归纳总结培优专题3.12 综合求证多变换几何结合代数算 (含解析):

    这是一份高考数学压轴难题归纳总结培优专题3.12 综合求证多变换几何结合代数算 (含解析),共23页。

    高考数学压轴难题归纳总结培优专题3.7 三点共线证法多斜率向量均可做 (含解析):

    这是一份高考数学压轴难题归纳总结培优专题3.7 三点共线证法多斜率向量均可做 (含解析),共25页。

    高考数学压轴难题归纳总结培优专题3.4 目标范围与最值函数处理最相宜 (含解析):

    这是一份高考数学压轴难题归纳总结培优专题3.4 目标范围与最值函数处理最相宜 (含解析),共23页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map