备战2024年高考数学大一轮复习(人教A版-理)第八章 立体几何与空间向量 第6节 空间向量及其应用
展开
这是一份备战2024年高考数学大一轮复习(人教A版-理)第八章 立体几何与空间向量 第6节 空间向量及其应用,共25页。试卷主要包含了空间向量的有关定理,空间向量数量积的运算律,空间向量的坐标表示及其应用,直线的方向向量和平面的法向量,空间位置关系的向量表示等内容,欢迎下载使用。
第6节 空间向量及其应用
考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;2.掌握空间向量的线性运算及其坐标表示;
3.掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直;4.理解直线的方向向量及平面的法向量;5.能用向量语言表述线线、线面、面面的平行和垂直关系;6.能用向量方法证明立体几何中有关线面位置关系的一些简单定理.
1.空间向量的有关概念
名称
定义
空间向量
在空间中,具有大小和方向的量
相等向量
方向相同且模相等的向量
相反向量
方向相反且模相等的向量
共线向量
(或平行向量)
表示空间向量的有向线段所在的直线互相平行或重合的向量
共面向量
平行于同一个平面的向量
2.空间向量的有关定理
(1)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使得a=λb.
(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=xa+yb.
(3)空间向量基本定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,其中,{a,b,c}叫做空间的一个基底.
3.空间向量的数量积
(1)两向量的夹角:已知两个非零向量a,b,在空间任取一点O,作=a,=b,则∠AOB叫做向量a与b的夹角,记作〈a,b〉,其范围是[0,π],若〈a,b〉=,则称a与b互相垂直,记作a⊥b.
(2)两向量的数量积:非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.
4.空间向量数量积的运算律
(1)结合律:(λa)·b=λ(a·b);
(2)交换律:a·b=b·a;
(3)分配律:a·(b+c)=a·b+a·c.
5.空间向量的坐标表示及其应用
设a=(a1,a2,a3),b=(b1,b2,b3).
向量表示
坐标表示
数量积
a·b
a1b1+a2b2+a3b3
共线
a=λb(b≠0,λ∈R)
a1=λb1,a2=λb2,a3=λb3
垂直
a·b=0(a≠0,b≠0)
a1b1+a2b2+a3b3=0
模
|a|
夹角
〈a,b〉(a≠0,b≠0)
cos〈a,b〉=
6.直线的方向向量和平面的法向量
(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.
(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.
7.空间位置关系的向量表示
位置关系
向量表示
直线l1,l2的方向向量分别为n1,n2
l1∥l2
n1∥n2⇔n1=λn2
l1⊥l2
n1⊥n2⇔n1·n2=0
直线l的方向向量为n,平面α的法向量为m
l∥α
n⊥m⇔n·m=0
l⊥α
n∥m⇔n=λm
平面α,β的法向量分别为n,m
α∥β
n∥m⇔n=λm
α⊥β
n⊥m⇔n·m=0
1.在平面中A,B,C三点共线的充要条件是:=x+y(其中x+y=1),O为平面内任意一点.
2.在空间中P,A,B,C四点共面的充要条件是:=x+y+z(其中x+y+z=1),O为空间任意一点.
3.向量的数量积满足交换律、分配律,即a·b=b·a,a·(b+c)=a·b+a·c成立,但不满足结合律,即(a·b)·c=a·(b·c)不一定成立.
4.在利用=x+y证明MN∥平面ABC时,必须说明M点或N点不在平面ABC内.
1.思考辨析(在括号内打“√”或“×”)
(1)直线的方向向量是唯一确定的.( )
(2)若直线a的方向向量和平面α的法向量平行,则a∥α.( )
(3)若{a,b,c}是空间的一个基底,则a,b,c中至多有一个零向量.( )
(4)若a·b
相关试卷
这是一份2024年数学高考大一轮复习第八章 §8.6 空间向量与立体几何,共4页。试卷主要包含了已知a=,b=,A,B等内容,欢迎下载使用。
这是一份备战2024年高考数学大一轮复习(人教A版-理)第八章 立体几何与空间向量 第3节 空间点、直线、平面之间的位置关系,共23页。试卷主要包含了平行公理和等角定理,异面直线所成的角等内容,欢迎下载使用。
这是一份备战2024年高考数学大一轮复习(人教A版-理)第八章 立体几何与空间向量 第7节 利用空间向量求空间角,共30页。试卷主要包含了求直线与平面所成的角,求二面角的大小,))等内容,欢迎下载使用。