![四川广安代市中学2020-2021学年高一月考数学试卷 Word版含答案第1页](http://m.enxinlong.com/img-preview/3/3/14482384/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川广安代市中学2020-2021学年高一月考数学试卷 Word版含答案第2页](http://m.enxinlong.com/img-preview/3/3/14482384/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![四川广安代市中学2020-2021学年高一月考数学试卷 Word版含答案第3页](http://m.enxinlong.com/img-preview/3/3/14482384/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
四川广安代市中学2020-2021学年高一月考数学试卷 Word版含答案
展开
这是一份四川广安代市中学2020-2021学年高一月考数学试卷 Word版含答案,共13页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
www.ks5u.com数学第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 设集合,则( ) A. B. C. D.2. 我们用来表示有限集合中元素的个数,已知集合,则 ( ) A.0 B.1 C.2 D.3 3. 若关于的方程和的解集分别为、,且 ,则( ). A.16 B.5 C.21 D.-54. 下列函数中,值域是的是( ) A. B. C. D.5. 下列四组函数中,与表示同一函数是( ) A. , B. , C. , D. ,6. 已知函数,若,则a的值为( ) A. 3或-3 B. -3 C. 3或 D. 3或-3或7. 已知 则( ) A. B. C. D. 8. 函数是定义在(-6,6)上的奇函数,如果在区间(-6,-2)上递减,在 (-2,0)上递增,且,那么函数在区间(0,6)上有最 值, 且该最值的值是 . ( ) A.小,-5 B.小,5 C.大,-5 D.大,59. 某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,杂志的单价每提高0.1元,销售量就可能减少2000本,若使提价后的销售总收入不低于20万元,则提价后的价格至多是( ) A.4元 B.5元 C.3元 D.6元 函数的单调递增区间是( ) A. B. C. D.11. 已知函数是R上的减函数,点是其图像上的两点,则不等式的解集的补集是( )A. B. C. D.12. 设奇函数上是增函数,且若对所有的及 任意的都满足,则的取值范围是( ) A. B. C. D. 第Ⅱ卷(非选择题共90分)二、填空题(20分,每小题5分) 14. 已知,则______________.15. 函数是上的减函数,则实数的取值范围是______. 定义域为R的函数满足以下条件: ①; ② ; ③ 则不等式的解集是 .三、解答题(共70分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程 或演算步骤)17.(本小题10分)计算:(1) (2)解不等式: 18.(本小题12分)设全集,,. (1)当时,求. (2)若,求实数取值范围. 19. (本小题12分)已知函数是, 且当时, (1)求的解析式; (2)现已画出函数在轴左侧的图像,如图 所示,请补出函数的完整图像,并根据 图像直接写出函数的单调区间及 的值域. 20. (本小题12分)已知函数的图像经过点. (1)求,并比较与的大小; (2)求函数的值域. 21. (本小题12分) 已知函数,.(1)当时,求的最值;(2)若的最小值为-5,求实数的值. 22. (本小题12分)已知定义域为的函数是奇函数. (1)求的值; (2)判断函数的单调性并利用定义证明;(3)若对任意的,不等式有解,求的取值范 围. 答案一、选择题DCBA BBCD ACCD1、本题考查元素与集合的关系, 2、本题考查集合中元素的互异性,集合的“描述法”与“列举法”互化。关于“card”请阅读“教材”第13—14页“阅读与思考”。3、本题考查集合的交集的定义,选B.4、本题考查函数的值域。需了解常见函数的值域的求法。5、考查函数的定义,分段函数。书18页例2的变式6、本题考查分段函数求值。7、本题考查利用指数函数的单调性比较大小。书57页例7改编。8、考查奇函数的性质和最值。书32页练习5改编。9、函数的应用10、考查复合函数的单调区间。解:, ∵是减函数,在上递增,在上递减,∴函数的增区间是.(定义域优先、复合函数:同增异减)11、考查函数的单调性,绝对值不等式和集合的运算。解:,即解集的补集为:12、本题考查函数的奇偶性、单调性,最值及恒成立等问题。解:∴所有的及任意的都满足可转化为时即时,设,则解之得:二、填空题13. 15. 16. 说明:15题区间、集合、不等式均可;16题区间或集合均可,但不等式不给分。13.书第8页例5改编.14. ,则,代入得:,∴,∴.故答案为:8.方法二:换元法、特殊值法。令,代入即可。15.因为是上的减函数,所以是减函数,是减函数,且,即,解得。故答案为:16.由条件①得函数由条件②得是偶函数;由条件③得作出的草图如右图所示。三、解答题17、解:(1) ………………………………2分 ………………………………4分 ………………………………5分说明:结果错误的第1步化简正确的1个记1分,但总分不超过2分(2)解:由得 ………………………………2分 ………………………………4分………………………………5分说明:没有说明单调性的不扣分,结果区间也给分。结果写成不等式的扣1分。18、解:(1)当时,, ………………………………5分(2), ………………………………6分①当时,则,解这得: ………………………………8分②当时,由得:, ………………………………10分解之得: ………………………………11分综上所述, ………………………………12分说明:第(1)问集合B化简正确记1分,集合A的补集计算正确的记2分,结果正确记2分。 第(2)问讨论时不写等号扣2分19.解:(1) ………………1分 ………………2分当 ………………4分综上:(也可写成:或) ………………6分(2)函数图像如图所示 ………………9分函数的单调递减区间为的单调递增区间为 ………………11分在区间 ………………12分说明:①第(1)问中没有说明扣1分;②第(2)问作图要注意三个点:每错一个扣1分③第(2)问中单调区间可写成开区间,不扣分,但处写成闭区间扣1分;两个减区间写成20、解:(1)根据题意可知:,且,解得. ………………2分∴又∵ ………………4分在R上单调递减。∴ ………………6分(2)令, ………………8分在R上单调递减。 ………………10分 ………………11分原函数的值域为. ………………12分说明:①第(1)问中没有等号扣2分;②第(2)问中没有说出大于0的扣2分。③的单调性判断错误的不给分。21、解:(1)时,, ………………1分关于对称,当时,单调递减,当时,单调递增. ………………2分,,……3分∴. ………………4分(2),对称轴为,函数图象开口向上, ………………5分①当时,在上单调递增,所以,即,∴ ………………7分②当时,在上单调递减,在上单调递减,所以,即,无解 ………………9分③当时,在上单调递减,所以,即,∴ ………………11分综上,当时,或. ………………12分说明:①第(1)问中区间写成闭区间也可;每少一个最值扣1分,算错一个最值扣1分;②第(2)问中每少一种分类讨论扣2分;③第(2)问中分类正确但计算错误扣1分。22、解:(1)由为奇函数可知:,解得 ………………2分(2) ………………3分 ………………5分 ………………7分(3)………9分 ………………10分 ………………12分明:①第(1)问中利用对称性或其它特殊值如求出同样给分;②第(2)问单调性判断正确给1分,证明没有利用定义,而是利用复合函数同增异减等进行判断不给分;③第(3)问中求出范围后,变成恒成立问题,即小于最小值,后面2分不给。
相关试卷
这是一份四川省广安市广安中学2020-2021学年高一上学期第一次月考数学试题 PDF版含答案,共15页。
这是一份四川省广安代市中学2020-2021学年高一上学期第一次月考数学试卷 Word版含答案,共8页。试卷主要包含了请将答案正确填写在答题卡上;等内容,欢迎下载使用。
这是一份四川北京师范大学广安实验学校2020-2021学年高一10月月考数学试卷 Word版含答案,共7页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)