![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第1页](http://m.enxinlong.com/img-preview/2/3/14399809/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第2页](http://m.enxinlong.com/img-preview/2/3/14399809/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(原卷版)第3页](http://m.enxinlong.com/img-preview/2/3/14399809/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第1页](http://m.enxinlong.com/img-preview/2/3/14399809/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第2页](http://m.enxinlong.com/img-preview/2/3/14399809/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)(解析版)第3页](http://m.enxinlong.com/img-preview/2/3/14399809/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用)
展开
这是一份专题03 二次函数与面积有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题03二次函数与面积有关的问题知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题03二次函数与面积有关的问题知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
专题03 二次函数与面积有关的问题(知识解读)【专题说明】二次函数是初中数学的一个重点,一个难点,也是中考数学必考的一个知识点。特别是 在压轴题中,二次函数和几何综合出现的题型,才是最大的区分度。 与面积有关的问题,更是常见。本节介绍二次函数考试题型种,与面积问题的常用解法。 同学们,只要熟练运用解法,炉火纯青,在考试答题的时候,能够轻松答题。【知识点梳理】类型一:面积等量关系类型二:面积平分方法一:利用割补将图形割(补)成三角形或梯形面积的和差,其中需使三角形的底边在坐标轴上或平行于坐标轴;(例如以下4、5两图中,连结BD解法不简便。) 方法二: 铅锤法(1)求 A、B 两点水平距离,即水平宽; (2)过点 C 作 x 轴垂线与 AB 交于点 D,可得点 D 横坐标同点 C; (3)求直线 AB 解析式并代入点 D 横坐标,得点 D 纵坐标; (4)根据 C、D 坐标求得铅垂高(5) 方法三 :其他面积方法如图1,同底等高三角形的面积相等.平行线间的距离处处相等.如图2,同底三角形的面积比等于高的比.如图3,同高三角形的面积比等于底的比. 如图1 如图2 如图3 【典例分析】【类型一:面积等量关系】【典例21】(2022•盘锦)如图,抛物线y=x2+bx+c与x轴交于A,B(4,0)两点(A在B的左侧),与y轴交于点C(0,﹣4).点P在抛物线上,连接BC,BP.(1)求抛物线的解析式;(2)如图1,若点P在第四象限,点D在线段BC上,连接PD并延长交x轴于点E,连接CE,记△DCE的面积为S1,△DBP的面积为S2,当S1=S2时,求点P的坐标;【解答】解:(1)将B(4,0)、C(0,﹣4)两点代入y=x2+bx+c得,,解得:,∴抛物线的解析式为:y=x2﹣3x﹣4;(2)方法一:由y=x2﹣3x﹣4可得,A(﹣1,0),设点P(m,m2﹣3m﹣4),则,,∵S△BCE=S1+S△BDE,S△BPE=S2+S△BDE,S1=S2,∴S△BCE=S△BPE,∴,解得:m1=3,m2=0(舍去),∴P(3,﹣4);方法二:∵S1=S2,∴S△PBE=S△CBE,∴PC∥x轴,∴点P与C关于对称轴x=对称,∴P(3,﹣4);【变式1】(2022•泸州)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+x+c经过A(﹣2,0),B(0,4)两点,直线x=3与x轴交于点C.(1)求a,c的值;(2)经过点O的直线分别与线段AB,直线x=3交于点D,E,且△BDO与△OCE的面积相等,求直线DE的解析式;(3)P是抛物线上位于第一象限的一个动点,在线段OC和直线x=3上是否分别存在点F,G,使B,F,G,P为顶点的四边形是以BF为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.【解答】解:(1)把A(﹣2,0),B(0,4)两点代入抛物线y=ax2+x+c中得:解得:;(2)由(1)知:抛物线解析式为:y=﹣x2+x+4,设直线AB的解析式为:y=kx+b,则,解得:,∴AB的解析式为:y=2x+4,设直线DE的解析式为:y=mx,∴2x+4=mx,∴x=,当x=3时,y=3m,∴E(3,3m),∵△BDO与△OCE的面积相等,CE⊥OC,∴•3•(﹣3m)=•4•,∴9m2﹣18m﹣16=0,∴(3m+2)(3m﹣8)=0,∴m1=﹣,m2=(舍),∴直线DE的解析式为:y=﹣x;【类型二:面积平分】【典例2】(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;【解答】解:(1)①∵抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),∴,解得:,∴抛物线的函数表达式为y=x2﹣x﹣3;②由①得y=x2﹣x﹣3,当y=0时,x2﹣x﹣3=0,解得:x1=6,x2=﹣2,∴A(﹣2,0),设直线AD的函数表达式为y=kx+d,则,解得:,∴直线AD的函数表达式为y=x﹣1;(2)设点E(t,t2﹣t﹣3),F(x,y),过点E作EM⊥x轴于点M,过点F作FN⊥x轴于点N,如图1,∵S1=2S2,即=2,∴=2,∴=,∵EM⊥x轴,FN⊥x轴,∴EM∥FN,∴△BFN∽△BEM,∴===,∵BM=6﹣t,EM=﹣(t2﹣t﹣3)=﹣t2+t+3,∴BN=(6﹣t),FN=(﹣t2+t+3),∴x=OB﹣BN=6﹣(6﹣t)=2+t,y=﹣(﹣t2+t+3)=t2﹣t﹣2,∴F(2+t,t2﹣t﹣2),∵点F在直线AD上,∴t2﹣t﹣2=﹣(2+t)﹣1,解得:t1=0,t2=2,∴E(0,﹣3)或(2,﹣4);【变式2】(2022•内江)如图,抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).(1)求这条抛物线所对应的函数的表达式;(2)若点D为该抛物线上的一个动点,且在直线AC上方,求点D到直线AC的距离的最大值及此时点D的坐标;(3)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为1:5两部分,求点P的坐标. 【解答】解:(1)∵抛物线y=ax2+bx+c与x轴交于A(﹣4,0),B(2,0),与y轴交于点C(0,2).∴,解得:,∴抛物线的解析式为y=﹣x2﹣x+2; (2)过点D作DH⊥AB于H,交直线AC于点G,过点D作DE⊥AC于E,如图.设直线AC的解析式为y=kx+t,则,解得:,∴直线AC的解析式为y=x+2.设点D的横坐标为m,则点G的横坐标也为m,∴DH=﹣m2﹣m+2,GH=m+2∴DG=﹣m2﹣m+2﹣m﹣2=﹣m2﹣m,∵DE⊥AC,DH⊥AB,∴∠EDG+DGE=AGH+∠CAO=90°,∵∠DGE=∠AGH,∴∠EDG=∠CAO,∴cos∠EDG=cos∠CAO==,∴,∴DE=DG=(﹣m2﹣m)=﹣(m2+4m)=﹣(m+2)2+,∴当m=﹣2时,点D到直线AC的距离取得最大值.此时yD=﹣×(﹣2)2﹣×(﹣2)+2=2,即点D的坐标为(﹣2,2); (3)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为1:5两部分,又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,则BE:AE=1:5或5:1则AE=5或1,即点E的坐标为(1,0)或(﹣3,0),将点E的坐标代入直线CP的表达式:y=nx+2,解得:n=﹣2或,故直线CP的表达式为:y=﹣2x+2或y=x+2,联立方程组或,解得:x=6或﹣,故点P的坐标为(6,﹣10)或(﹣,﹣).【典例3】(深圳)如图抛物线y=ax2+bx+c经过点A(﹣1,0),点C(0,3),且OB=OC.(1)求抛物线的解析式及其对称轴;(2)点P为抛物线上一点,连接CP,直线CP把四边形CBPA的面积分为3:5两部分,求点P的坐标.【答案】(1) y=﹣x2+2x+3 ;x=1(2)P的坐标为(4,﹣5)或(8,﹣45)【解答】解:(1)∵OB=OC,∴点B(3,0),则抛物线的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3)=ax2﹣2ax﹣3a,故﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+3…①,函数的对称轴为:x=1;(2)如图,设直线CP交x轴于点E,直线CP把四边形CBPA的面积分为3:5两部分,又∵S△PCB:S△PCA=EB×(yC﹣yP):AE×(yC﹣yP)=BE:AE,则BE:AE=3:5或5:3,则AE=或,即:点E的坐标为(,0)或(,0),将点E的坐标代入直线CP的表达式:y=kx+3,解得:k=﹣6或﹣2,故直线CP的表达式为:y=﹣2x+3或y=﹣6x+3…②联立①②并解得:x=4或8(不合题意值已舍去),故点P的坐标为(4,﹣5)或(8,﹣45). 【变式3】(2021秋•合川区)如图,抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),与y轴交于点C,点P为第一象限内抛物线上一动点,过点P作x轴的垂线,交直线BC于点D,交x轴于点E,连接PB.(1)求该抛物线的解析式;(2)当△PBD与△BDE的面积之比为1:2时,求点P的坐标;【答案】(1) y=﹣x2+5x+6 (2)P(,)【解答】解:(1)∵抛物线y=ax2+bx+6(a≠0)与x轴交于A(﹣1,0),B(6,0),∴,∴,∴抛物线的解析式为y=﹣x2+5x+6;(2)∵抛物线y=﹣x2+5x+6过点C,∴C(0,6),设直线BC的解析式为y=kx+n,∴,∴,∴直线BC的解析式为y=﹣x+6,设P(m,﹣m2+5m+6),则D(m,﹣m+6),∴PE=﹣m2+5m+6,DE=﹣m+6,∵△PBD与△BDE的面积之比为1:2,∴PD:DE=1:2,∴PE:DE=3:2,∴3(﹣m+6)=2(﹣m2+5m+6),解得,m2=6(舍去),∴P(,);
相关试卷
这是一份专题03 阿氏圆(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题03阿氏圆知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题03阿氏圆知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共16页, 欢迎下载使用。
这是一份专题11 二次函数与矩形、菱形的存在性问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题11二次函数与矩形菱形的存在性问题知识解读解析版docx、专题11二次函数与矩形菱形的存在性问题知识解读原卷版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份专题08 二次函数与平行四边形有关的问题(知识解读)-备战中考数学《重难点解读•专项训练》(全国通用),文件包含专题08二次函数与平行四边形有关的问题知识解读-备战中考数学《重难点解读•专项训练》全国通用解析版docx、专题08二次函数与平行四边形有关的问题知识解读-备战中考数学《重难点解读•专项训练》全国通用原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。