题型九 二次函数综合题 类型三 二次函数与面积有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用)
展开这是一份题型九 二次函数综合题 类型三 二次函数与面积有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型三二次函数与面积有关的问题专题训练解析版docx、题型九二次函数综合题类型三二次函数与面积有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
题型九 二次函数综合题
类型三 二次函数与面积有关的问题(专题训练)
1.已知二次函数,其中.
(1)当该函数的图像经过原点,求此时函数图像的顶点的坐标;
(2)求证:二次函数的顶点在第三象限;
(3)如图,在(1)的条件下,若平移该二次函数的图像,使其顶点在直线上运动,平移后所得函数的图像与轴的负半轴的交点为,求面积的最大值.
2.如图,在平面直角坐标系中,二次函数的图像与x轴交于点.、,与y轴交于点C.
(1)________,________;
(2)若点D在该二次函数的图像上,且,求点D的坐标;
(3)若点P是该二次函数图像上位于x轴上方的一点,且,直接写出点P的坐标.
3.已知:直线与轴、轴分别交于、两点,点为直线上一动点,连接,为锐角,在上方以为边作正方形,连接,设.
(1)如图1,当点在线段上时,判断与的位置关系,并说明理由;
(2)真接写出点的坐标(用含的式子表示);
(3)若,经过点的抛物线顶点为,且有,的面积为.当时,求抛物线的解析式.
3.如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.
(1)求、的值;
(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?
(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.
4.如图,在平面直角坐标系中,抛物线与x轴交于点,,与y轴交于点C.
(1)求该抛物线的解析式;
(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;
(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.
5.如图,已知二次函数y=﹣x2+(a+1)x﹣a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知△BAC的面积是6.
(1)求a的值;
(2)在抛物线上是否存在一点P,使S△ABP=S△ABC.若存在请求出P坐标,若不存在请说明理由.
6.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.
(1)求此抛物线的表达式;
(2)若PC∥AB,求点P的坐标;
(3)连接AC,求△PAC面积的最大值及此时点P的坐标.
8.若一次函数y=﹣3x﹣3的图象与x轴,y轴分别交于A,C两点,点B的坐标为(3,0),二次函数y=ax2+bx+c的图象过A,B,C三点,如图(1).
(1)求二次函数的表达式;
(2)如图(1),过点C作CD∥x轴交抛物线于点D,点E在抛物线上(y轴左侧),若BC恰好平分∠DBE.求直线BE的表达式;
(3)如图(2),若点P在抛物线上(点P在y轴右侧),连接AP交BC于点F,连接BP,S△BFP=mS△BAF.
①当m时,求点P的坐标;
②求m的最大值.
9.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(,0),直线BC的解析式为yx+2.
(1)求抛物线的解析式;
(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;
(3)将抛物线y=ax2+bx+2(a≠0)向左平移个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.
10.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
11.已知抛物线y=ax2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,C为抛物线的顶点,抛物线的对称轴交x轴于点D,连结BC,且tan∠CBD,如图所示.
(1)求抛物线的解析式;
(2)设P是抛物线的对称轴上的一个动点.
①过点P作x轴的平行线交线段BC于点E,过点E作EF⊥PE交抛物线于点F,连结FB、FC,求△BCF的面积的最大值;
②连结PB,求PC+PB的最小值.
12.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.
13.如图,在平面直角坐标系xOy中,已知直线yx﹣2与x轴交于点A,与y轴交于点B,过A、B两点的抛物线y=ax2+bx+c与x轴交于另一点C(﹣1,0).
(1)求抛物线的解析式;
(2)在抛物线上是否存在一点P,使S△PAB=S△OAB?若存在,请求出点P的坐标,若不存在,请说明理由;
(3)点M为直线AB下方抛物线上一点,点N为y轴上一点,当△MAB的面积最大时,求MNON的最小值.
相关试卷
这是一份题型九 二次函数综合题 类型五 二次函数与三角形全等、相似(位似)有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练解析版docx、题型九二次函数综合题类型五二次函数与三角形全等相似位似有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型四 二次函数与角度有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型四二次函数与角度有关的问题专题训练解析版docx、题型九二次函数综合题类型四二次函数与角度有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型十一 二次函数与正方形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练解析版docx、题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。