题型九 二次函数综合题 类型九 二次函数与菱形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用)
展开这是一份题型九 二次函数综合题 类型九 二次函数与菱形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型九二次函数与菱形有关的问题专题训练解析版docx、题型九二次函数综合题类型九二次函数与菱形有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
题型九 二次函数综合题
类型九 二次函数与菱形有关的问题(专题训练)
1.(2022·湖南湘潭)已知抛物线.
(1)如图①,若抛物线图象与轴交于点,与轴交点.连接.
①求该抛物线所表示的二次函数表达式;
②若点是抛物线上一动点(与点不重合),过点作轴于点,与线段交于点.是否存在点使得点是线段的三等分点?若存在,请求出点的坐标;若不存在,请说明理由.
(2)如图②,直线与轴交于点,同时与抛物线交于点,以线段为边作菱形,使点落在轴的正半轴上,若该抛物线与线段没有交点,求的取值范围.
2.(2021·湖南中考真题)如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C.
(1)求的值;
(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q.
①当时,求当P点到直线的距离最大时m的值;
②是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值.
3.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点.
(1)求抛物线的解析式;
(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,,,为顶点的四边形是以为边的菱形.若存在,请求出点的坐标;若不存在,请说明理由;
(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,.探究是否存在最小值.若存在,请求出这个最小值及点的坐标;若不存在,请说明理由.
4.(2021·山西中考真题)如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点,连接,.
(1)求,,三点的坐标并直接写出直线,的函数表达式;
(2)点是直线下方抛物线上的一个动点,过点作的平行线,交线段于点.
①试探究:在直线上是否存在点,使得以点,,,为顶点的四边形为菱形,若存在,求出点的坐标;若不存在,请说明理由;
②设抛物线的对称轴与直线交于点,与直线交于点.当时,请直接写出的长.
5.(2021·内蒙古)如图,抛物线交x轴于,两点,交y轴于点C,动点P在抛物线的对称轴上.
(1)求抛物线的解析式;
(2)当以P,B,C为顶点的三角形周长最小时,求点P的坐标及的周长;
(3)若点Q是平面直角坐标系内的任意一点,是否存在点Q,使得以A,C,P,Q为顶点的四边形是菱形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.
6.(2020•重庆)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
相关试卷
这是一份题型九 二次函数综合题 类型一 二次函数公共点问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型一二次函数公共点问题专题训练解析版docx、题型九二次函数综合题类型一二次函数公共点问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型四 二次函数与角度有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型四二次函数与角度有关的问题专题训练解析版docx、题型九二次函数综合题类型四二次函数与角度有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份题型九 二次函数综合题 类型十一 二次函数与正方形有关的问题(专题训练)-中考数学二轮复习讲练测(全国通用),文件包含题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练解析版docx、题型九二次函数综合题类型十一二次函数与正方形有关的问题专题训练原卷版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。